You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Space-Time Signal Processing for Detecting and Classifying Distributed Attacks in Networks

    SBC: NUMERICA CORPORATION            Topic: AF09BT09

    A mathematical framework for detection and classification of weak, distributed patterns on computer networks is proposed. The framework will provide rigorous methods for understanding performance bounds and optimality of intrusion detection methods, while also providing concrete and implementable algorithms. The algorithms will find immediate application in cyber-security efforts, as well as mor ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Low-Cost Ball/Air/Magnetic Hybrid Bearing System for Extended-Life Micro Gas Turbine Engines

    SBC: Nastec, Inc.            Topic: N10AT037

    A unique type of air lubricated thrust bearing called a Wave Bearing is proposed to assist a rolling element bearing to carry the thrust load and to improve the bearing’s life when used in a micro gas turbine engine. The Wave Bearing technology will provide improved reliability, safety and life compared to rolling element bearings used alone, as well as to allow simplification of engine design a ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Surface plasmon enhanced thin-film photovoltaic systems

    SBC: ITN ENERGY SYSTEMS, INC.            Topic: AF09BT39

    This Small Business Technology Transfer Research phase I program will develop a new class of surface plasmon enhanced photovoltaic devices that exhibit increased current collection. Photon management, the manipulation of the incident optical field to increase the probability that a photon is absorbed in the active region of the cell, is critical to the development of next generation thin film sol ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Multi-scale Physics-Based Models for alpha-betaTitanium Alloys Accounting for Higher-Order Microstructure Statistics.

    SBC: MRL MATERIALS RESOURCES LLC            Topic: AF09BT29

    Modern military and civilian aircraft technologies are pushing the performance envelope through design and use of new advanced materials with superior property combinations. Aircraft powerplant manufacturers are facing intense competition to efficiently deliver ever increasing thrust, while meeting the highest standards of reliability and performance over an expanded service life. These performanc ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Metal-blacks for plasmonic enhancement of solar-cell efficiency

    SBC: Physical Engineering Corporation            Topic: AF09BT39

    This Phase I STTR proposal will demonstrate nanostructured “metal-black” coatings to enhance absorption by thin film solar cells. The problem is that silicon has low absorption due to its indirect gap. The opportunity is that nano-scale metallic scattering centers increase the effective optical path length and enhance the solar electric-field strength in thin-film solar cells, leading to more ...

    STTR Phase I 2010 Department of DefenseAir Force
  6. Eye-safe Optically-Pumped Gas-filled Fiber Lasers

    SBC: Precision Photonics Corporation            Topic: A08T021

    An eye-safe optically pumped laser based on a gas-filled hollow optical fiber will be demonstrated to lase at both near infrared (IR) and mid IR wavelengths. These lasers will be the first in a new class of IR lasers, based on the combination of hollow-f

    STTR Phase II 2010 Department of DefenseArmy
  7. Development for Radiation Hardened Applications of Advanced Electronics Materials, Processes, and Devices

    SBC: RNET TECHNOLOGIES INC            Topic: MDA09T006

    The Missile Defense Agency (MDA) seeks technical investigations related to the development and application of advanced electronic materials, processes, and devices to meet its need for radiation hardened, high performance electronics for critical space and missile applications. With the advent of smaller transistor dimensions and reductions in price per bit, significant changes in materials and pr ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  8. Contamination-free, Ultra-rapid Reactive Chemical Mechanical Polishing (RCMP) of GaN substrates

    SBC: Sinmat Inc            Topic: MDA09T001

    Gallium Nitride (GaN) substrates are ideal materials for fabrication of high-power and high-frequency devices based on III-V materials. The current state-of-the-art Chemical Mechanical Polishing (CMP) methods are plagued by several challenges, including, surface charge affects due to surface contamination, and sub-surface damages, which can limit the quality of III-V devices. Furthermore, there is ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  9. Fabrication of Ta-Hf-C-based Ultra High Temperature Composites via a

    SBC: UES INC            Topic: MDA09T002

    This Phase I STTR program seeks a new fabrication method to produce stronger (>100 kpsi) and tougher (>10 MPa m1/2) ultra high temperature Ta-Hf-C-based composites (UHTC) with an outstanding oxidation resistance for use as thermal protection systems for hypersonic applications, as well as for advanced rocket nozzle throat components. UES will apply a novel "Top Down" approach to control the micro ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  10. Software Defined Multi-Channel Radar Receivers for X-band Radars

    SBC: DGNSS Solutions, LLC            Topic: MDA09T003

    The primary objective of the proposed research is to develop proof of concept of a software programmable X-Band radar system using low cost antenna array technology with digital beamforming architecture based on multiple receiver channels. The performance objectives will aim at a minimum of 400 MHz instantaneous bandwidth and a minimum instantaneous dynamic range of 52 dB. The objective of the t ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government