You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Adaptive Optics controlled nonlinear propagation of USLP

    SBC: ADVANCED SYSTEMS & TECHNOLOGIES INC            Topic: N17AT024

    Filamentation of ultra-short laser pulse propagation in non-linear media offers significant potentials allowing to address numerous problems in military and commercial sectors. However, practical implementation of this requires an ability to control the USLP at its propagation through inhomogeneous media, like turbulent atmosphere. On the basis of our approach for combating turbulence effects on p ...

    STTR Phase I 2017 Department of DefenseNavy
  2. Adaptive Optics for Nonlinear Atmospheric Propagation of Laser Pulses

    SBC: TOYON RESEARCH CORPORATION            Topic: N17AT024

    Ultra-short pulse lasers have advantages over continuous-wave lasers for directed-energy applications due to the high peak powers that can be reached. Directed-energy weapons are profoundly limited by the aberrations caused by atmospheric turbulence and current adaptive optics can correct for these aberrations only when the propagation medium is reciprocal. Unfortunately, nonlinear effects in the ...

    STTR Phase I 2017 Department of DefenseNavy
  3. Improved High-Frequency Bottom Loss Characterization

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N17AT026

    We propose development of an improved bottom database suitable for use in the frequency range of 1-10 kHz. Measured transmission loss (TL) and reverberation level (RL) will be jointly processed in building the database. The influence of the rough sea surface, rough seafloor, as well as subbottom heterogeneity will be accounted for during database generation. The rough sea surface will be character ...

    STTR Phase I 2017 Department of DefenseNavy
  4. Multi-Sensor Autonomous Hydrothemal Vent Detection System

    SBC: 10dBx LLC            Topic: N17AT028

    Development of a concept of operations is proposed for autonomous hydrothermal vent detection in a single sortie. The concept involves active sonars (forward looking and swath mapping sonars, plus possibly a 1-2 MHz acoustic Doppler current profiler (ADCP) for measuring midwater turbulence) mounted on a commercial AUV equipped with environmental sensors (e.g., CTD, fluorometer, MAPR-ORP). The AUV ...

    STTR Phase I 2017 Department of DefenseNavy
  5. Spatiotemporal Shaping for Parallel Additive Manufacturing

    SBC: POLARONYX INC            Topic: N17AT030

    This Navy STTR Phase I proposal presents an parallel AM tool to eliminate conventional scanning strategy. A 2D MEMS array is used to shape both in time domain and spatial domain to obtain the desired pattern for layer by layer process. Modeling is used to study in-process melting evolution versus powder and beam properties. It provides quantitative characterization of the AM system to guide the de ...

    STTR Phase I 2017 Department of DefenseNavy
  6. Risk-Based Unmanned Air System (UAS) Mission Path Planning Capability

    SBC: ACTA, LLC            Topic: N17BT034

    In this Phase I Project ACTA and its partners will demonstrate the feasibility of developing a risk-based mission path planning (RB MPP) approach. Areas of interest to the Navy where a RB MPP address critical needs include enabling less restrictive UAS operations within the US National and Foreign Airspaces. The Phase I will demonstrate feasibility with a two-step approach. The first step will dem ...

    STTR Phase I 2017 Department of DefenseNavy
  7. Cognitive Risk Management for UAS Missions

    SBC: Stottler Henke Associates, Inc.            Topic: N17BT035

    Enabling operators to command and control multiple UAVs will require higher levels of supervisory control, enabling vehicles to operate autonomously during larger portions of each mission. For the foreseeable future, however, critical portions of each mission will require operators to apply their superior knowledge, judgment, and skills to assess the situation, monitor execution more closely and, ...

    STTR Phase I 2017 Department of DefenseNavy
  8. Cognitive Adaptation and Mission Optimization (CAMO) for Autonomous Teams of UAS Platforms

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: N17BT035

    OKSI and Professor Matthew Taylor will develop the Cognitive Adaptation and Mission Optimization (CAMO) command and control tool for teams of UAS platforms. CAMO will incorporate existing databases (e.g., NASA population maps, FAA airspace maps, etc.) as well as real-time data from UAS into a learning-based cognitive control solution that maximizes mission performance while minimizing risk for a t ...

    STTR Phase I 2017 Department of DefenseNavy
  9. Body-worn Wireless Physiological Monitoring Network

    SBC: Cognionics, Inc.            Topic: N13AT021

    This STTR Phase II proposal continues our work towards building a simple, high quality and unobtrusive mobile physiological sensor platform. The capabilities of the Phase I prototype will be expanded by adding sensors to further acquire SpO2 and respiration in addition to forming a body area network for data collection across multiple points on a subjects body. A software infrastructure will also ...

    STTR Phase II 2017 Department of DefenseNavy
  10. Innovative Physics-based Modeling Tool for Application to pRFID System on Rotorcraft

    SBC: MATHEMATICAL SYSTEMS & SOLUTIONS, INC.            Topic: N15AT005

    We propose development of a software capability which, based on use of accurate and efficient exact-physics computational electromagnetics (CEM) solvers together with CAD-import (Computer Aided Design) and direct CAD-to-EM capabilities, will enable optimization of the properties of on-platform pRFID tag/reader antenna systems. For accuracy and modeling flexibility the proposed codes are based on M ...

    STTR Phase II 2017 Department of DefenseNavy
US Flag An Official Website of the United States Government