You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Ignition Modeling for Present and Future Combustors and Augmentors

    SBC: COMBUSTION SCIENCE & ENGINEERING, INC.            Topic: N17AT003

    The ability to predict the ignitibility potential of a combustor at various operating conditions is not practical at this time due to the complexity of this process. Ignition within a gas turbine combustor is dependent on various parameters; including spark (or plasma) energy, flow conditions, fuel/air ratio, and fuel spray density. All these parameters must be properly predicted in order to effec ...

    STTR Phase II 2018 Department of DefenseNavy
  2. A Scalable Event Extractor for Multi-Level Event Data and Pattern Archiving: SEE

    SBC: Intelligent Automation, Inc.            Topic: N17AT022

    To address the need of auto-extracting data relevant to significant events and to archive patterns, Intelligent Automation, Inc. (IAI) team proposes to continue developing a Scalable Event Extractor for Multi-Level Event Data and Pattern Archiving: SEE. The key innovations of our proposed SEE system are (1) a large class of analytics that extract valuable and important information from raw data, a ...

    STTR Phase II 2018 Department of DefenseNavy
  3. Improved High-Frequency Bottom Loss Characterization

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N17AT026

    We propose development of an improved bottom database suitable for use in the frequency range of 1-10 kHz. Measured transmission loss (TL) and reverberation level (RL) will be jointly processed in building the database. The influence of the rough sea surface, rough seafloor, as well as subbottom heterogeneity will be accounted for during database generation. The rough sea surface will be character ...

    STTR Phase II 2018 Department of DefenseNavy
  4. Protocol Feature Identification and Removal

    SBC: P & J ROBINSON CORP            Topic: N18AT018

    Protocols used for communication suffer bloat from a variety of sources, such as support for legacy features or rarely used (and unnecessary) functionality. Traditionally, the Navy subscribes to a blanket adoption of a standard protocol "as is". Unnecessary features are active and can be accessed by both internal and external systems creating security vulnerabilities. PJR Corporation's (PJR's) Pha ...

    STTR Phase I 2018 Department of DefenseNavy
  5. Hybrid High Ampacity Electric Power Cable

    SBC: ADVANCED CONDUCTOR TECHNOLOGIES LLC            Topic: N15AT016

    The Navy is interested in developing hybrid superconducting power transmission cables that would carry at least 5 kA of current and have a current density of at least 35 MA/m2. The cable should be able to carry 30 % of the rated current even when the superconducting cable fails. We propose to develop a hybrid superconducting cable, based on CORC cables, which potentially have a current density of ...

    STTR Phase I 2015 Department of DefenseNavy
  6. Fully Encapsulating Dielectrics for Gaseous Helium Cooled Superconducting CORC Power Cables

    SBC: ADVANCED CONDUCTOR TECHNOLOGIES LLC            Topic: N16AT011

    Future power systems on board Navy ships require electrical power in the order of 20 to 80 MW, which currently cant be provided by conventional copper or aluminum power cables. Advanced Conductor Technologies LLC (ACT) has been developing high-temperature superconducting Conductor on Round Core (CORC) power transmission cables, rated at 10 kA per phase, for the Navy that form a potential solution ...

    STTR Phase I 2016 Department of DefenseNavy
  7. Aircraft Carrier-based Precision Ship-Relative Navigation Guidance for Aircraft Landing under Emissions Control Conditions

    SBC: COHERENT TECHNICAL SERVICES, INC.            Topic: N15AT014

    This research will show how data-capable laser communication retro-reflectors integrated with multispectral image processing can provide extreme reliability positioning suitable for full time automatic landing aboard ship of piloted fixed wing aircraft. The positioning system supports the SALRS long-term objective to reduce or eliminate pilot training to perform manual landing aboard ship includin ...

    STTR Phase I 2015 Department of DefenseNavy
  8. Aircraft Carrier-based Precision Ship-Relative Navigation Guidance for Aircraft Landing under Emissions Control Conditions

    SBC: COHERENT TECHNICAL SERVICES, INC.            Topic: N15AT014

    The ability to refuel piloted aircraft in flight is considered a strategic military advantage and has been a critical element of success in nearly every US and NATO military engagement of the jet age. One key asset used to facilitate aerial refueling is PMA-201’s Aerial Refueling Store (ARS), which allows fighters and other store-carrying aircraft to be reconfigured as tankers. The ARS is set to ...

    STTR Phase II 2018 Department of DefenseNavy
  9. In situ NDI and correction of the AM process with laser SAW and heterodyne detection

    SBC: POLARONYX INC            Topic: N15AT008

    This Navy STTR Phase I proposal presents an unprecedented NDI tool to support laser additive manufacturing of metal parts by using fiber laser SAW and heterodyne detection. It is the enabling technology for real time characterize the AM parts in terms of temperature, cooling rate, grain structure, and defects. A proof of concept demonstration will be carried out at the end of Phase 1.Prototypes wi ...

    STTR Phase I 2015 Department of DefenseNavy
  10. Process diagnostics to quantify mechanical performance of AM parts

    SBC: POLARONYX INC            Topic: N16AT004

    This Navy STTR Phase I proposal presents an unprecedented NDI tool to quantify mechanical properties of metal parts made with laser additive manufacturing with material characteristics and process parameters. A fiber laser SAW and heterodyne detection is used with LIBS to study both in-process and post-process for both flat and shaped parts. It is the enabling technology for characterize the AM pa ...

    STTR Phase I 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government