You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Multiple Hit Performance of Small Arms Protective Armor

    SBC: TRANSPARENT ARMOR SOLUTIONS INC.            Topic: A14AT017

    Our nation’s warfighters require advanced armor to give them the best protection while allowing mobility to perform their missions. This proposal will develop two powerful tools to aid future body armor advancements. First, this research program will develop a statistical analysis software that will predict likelihood of impacts based on defined attack scenarios (i.e. rifle, distance and firing ...

    STTR Phase II 2018 Department of DefenseArmy
  2. Compact Laser Drivers for Photoconductive Semicond

    SBC: SCIENTIFIC APPLICATIONS & RESEARCH ASSOCIATES, INC.            Topic: DTRA16A004

    For effective protection against radiated threats, it is important to understand not only the physics of the threats, but also to quantify the effects they have on mission-critical electrical systems. Radiated vulnerability and susceptibility testing requires delivery of high peak power and peak electric fields to distant targets. The most practical solution to simulate such environments on large ...

    STTR Phase II 2018 Department of DefenseDefense Threat Reduction Agency
  3. Innovative Multi-scale/Multi-physics based Tool for Predicting Fatigue Crack Initiation and Propagation in Aircraft Structural Components using Phase

    SBC: Coreform LLC            Topic: N16AT003

    The purpose of this Phase II project is to develop computational modeling methods that are able to describe the propagation and interaction of fatigue cracks using the phase-field methodology within the numerical framework of isogeometric analysis (IGA). The resulting computational platform, while focused on fracture and fatigue, will be general, in that any phase-field method can be easily incorp ...

    STTR Phase II 2018 Department of DefenseNavy
  4. Innovations in Designing Damage Tolerant Rotorcraft Components by Interface Tailoring

    SBC: HARP ENGINEERING LLC            Topic: N19AT003

    The performance of a composite material is heavily influenced by the strength and toughness of the interlaminar region, which is the resin rich area between the plies of a fiber reinforced composite.  The interlaminar region generally provides a direct path for crack propagation since no continuous reinforcement is present and is often the cause of failure in materials subjected to cyclic loadin ...

    STTR Phase II 2020 Department of DefenseNavy
  5. Service Design Accelerator- Phase II

    SBC: SKYLIGHT INC.            Topic: AF20ATCSO1

    Service design is an emerging, but proven discipline for transforming user experiences by designing, aligning, and optimizing an organization's operation (people, processes, technology, etc.) to better support customer journeys. During Phase I, we conducted research and determined the feasibility of using an "accelerator model" to galvanize the rapid adoption of service design across the USAF, sta ...

    STTR Phase II 2020 Department of DefenseAir Force
  6. High Electron Mobility GaN for THz-Band Multipliers

    SBC: TOYON RESEARCH CORPORATION            Topic: AF20ATCSO1

    Toyon is proposing to develop multiplier diode technology with record power handling in the 200 – 400 GHz output frequency range using Gallium Nitride (GaN) materials. This technology is needed to effectively utilize the high pump power now available from mmWave GaN power amplifiers. GaN has inherent material property advantages including high electric field strength, electron velocity, and ther ...

    STTR Phase II 2020 Department of DefenseAir Force
  7. Automated Tourniquet System

    SBC: OLGS, Inc.            Topic: AF19CT010

    OLGS is developing an automated tourniquet system. It is an intuitive device that works with the push of a button. The user only needs to know 'high-and-tight' and push the button for the tourniquet to be effective. It contains a band with wires embedded that is tightened by a motor-driven spool. It also contains a micro-controller unit with integrated sensors to ensure limb occlusion pressure is ...

    STTR Phase II 2020 Department of DefenseAir Force
  8. Spectrum Attenuation Reporting Sensor System

    SBC: 0 BASE DESIGN LLC            Topic: AF18BT005

    The Phase 2 development will yield a prototype Cognitive Data Sampling (CDS) system for 2 RF bands to fully demonstrate the capability of the underlying technology. This will include the development of RF antennas, RF signal conditioning for the bands, CDS analog to conversion module and a processor module. The processor module shall be comprised of a Commercial Off-The-Shelf (COTS) module that in ...

    STTR Phase II 2020 Department of DefenseAir Force
  9. Carbon Nanotube Based Monolithic Millimeter-wave Integrated Circuits

    SBC: Carbonics, Inc.            Topic: A18BT004

    Carbonics, Inc. is the only small business entity that is razor-focused on developing and commercializing wafers-scale carbon nanotube (CNT) based RF products for mmWave communications that can outperform incumbent semiconductor high frequency technologies (GaAs & RF-CMOS). Our STTR Phase I accomplishments exceeded all expectations, setting a new world record for CNT FET RF technology (fT > 100 GH ...

    STTR Phase II 2020 Department of DefenseArmy
  10. Quantum Utilities for Integrated Characterization

    SBC: Quantum Benchmark Inc            Topic: A18BT011

    Quantum information processing has the potential to revolutionize the U.S. economy, with a potential market value of hundreds of billions of dollars for quantum-information based technologies in a wide variety of sectors, including pharmaceuticals, energy, transportation, and cyber security. A major obstacle to realizing this potential is overcoming the error-prone nature of quantum information, w ...

    STTR Phase II 2020 Department of DefenseArmy
US Flag An Official Website of the United States Government