You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Innovative Processing Techniques for Additive Manufacture of 7000 Series Aluminum Alloy Components

    SBC: SENSIGMA LLC            Topic: N18AT005

    Naval aircraft components are routinely made of 7000 series aluminum alloys due to their strength, weight and fatigue properties. Present Additive Manufacturing (AM) processes fall short of producing 7000 series Al alloys successfully due to lack of porosity, and thermal and composition control. In-situ methods implemented to date largely only yield information about the component surface and othe ...

    STTR Phase II 2020 Department of DefenseNavy
  2. Circuit Integration for Robust Quantum Information Technology Scalability (CIRQuITS)

    SBC: VECTOR ATOMIC INC            Topic: A18BT014

    Vector Atomic and Stanford University will develop precision, ultra-low noise laser control electronics with low cost, size, weight, and power (C-SWaP). The electronics will be designed to broadly support the various laser types of used for quantum technology, which span 369-1550 nm. The C-SWaP and system architecture will support scaling of quantum systems to higher laser counts. The design will ...

    STTR Phase II 2020 Department of DefenseArmy
  3. Reconfigurable/Cognitive Optical Communications

    SBC: VULCAN WIRELESS, INC.            Topic: AF18AT010

    As the number of optical communication terminals proliferate there will be a need to have these terminals interoperate.  In the past, optical terminals were designed with a single purpose in mind.  New space constellations are requiring non-RF crosslink solutions.  It is expected that there will be a large number of both commercial and military systems providing crosslinks and space to earth li ...

    STTR Phase II 2020 Department of DefenseAir Force
  4. Spectrum Attenuation Reporting Sensor System

    SBC: 0 BASE DESIGN LLC            Topic: AF18BT005

    The Phase 2 development will yield a prototype Cognitive Data Sampling (CDS) system for 2 RF bands to fully demonstrate the capability of the underlying technology. This will include the development of RF antennas, RF signal conditioning for the bands, CDS analog to conversion module and a processor module. The processor module shall be comprised of a Commercial Off-The-Shelf (COTS) module that in ...

    STTR Phase II 2020 Department of DefenseAir Force
  5. Positioning and Scaling of the CAVEMAN Human Body Model for Pilot Injury Risk Analysis

    SBC: CORVID TECHNOLOGIES LLC            Topic: AF19CT010

    The proposed project will develop subject-specific FE models of the head and integrate them with a full body finite element model. The combination of patient-specific head geometries with the generalized body model will provide a platform with which to apply improved boundary conditions for the head and neck, including applied muscle tension and the application of appropriate kinematics of the hea ...

    STTR Phase II 2020 Department of DefenseAir Force
  6. Optimization of Sodium Guide Star Return using Polarization and/or Modulation Control

    SBC: ROCHESTER SCIENTIFIC LLC            Topic: AF19AT008

    Laser guide stars (LGS) are artificial sources of light produced by laser-induced fluorescence from sodium atoms in the mesosphere between 85 km and 100 km altitude. The fluorescence can be detected on the ground with a telescope and used as a reference for compensating atmospheric aberrations in astronomical and space observations in conjunction with an adaptive optics system. Sodium LGS are vita ...

    STTR Phase II 2020 Department of DefenseAir Force
  7. Diamond Materials for Quantum Technologies

    SBC: GREAT LAKES CRYSTAL TECHNOLOGIES INC            Topic: AF19CT010

    Great Lakes Crystal Technologies (GLCT) is partnered with Michigan State University (MSU) to develop novel diamond materials for research and evaluation at Air Force Research Laboratory for applications in quantum communications. The technical effort seeks to build upon advanced plasma assisted chemical vapor deposition (CVD) technology licensed by GLCT which was developed at MSU by scientists at ...

    STTR Phase II 2020 Department of DefenseAir Force
  8. Optimizing Human-Automation Team Workload through a Non-Invasive Detection System

    SBC: Stottler Henke Associates, Inc.            Topic: ST16C003

    We propose to investigate, in collaboration with MGH Voice Center and Altec, Inc., application of surface electromyography (sEMG) to assessing cognitive workload, strain, and overload. Specifically, sEMG sensors placed on the face and neck will detect emotional/motor responses to workload strain. The proposed effort will build on the substantial sEMG experience of our partner, MGH (including resea ...

    STTR Phase II 2018 Department of DefenseDefense Advanced Research Projects Agency
  9. High-Quality AlGaN Substrates for Optical and Electronic Applications

    SBC: KYMA TECHNOLOGIES, INC.            Topic: AF17AT024

    Kyma Technologies, the leading domestic supplier of crystalline III-N substrate materials, is teamed with leading AlGaN materials & device experts at Sandia National Laboratories (SNL) to develop high-quality n-type conductive 2-inch diameter epi-ready free-standing AlGaN substrates in support of next generation AlGaN devices with applications in ultraviolet optoelectronics, power electronics, and ...

    STTR Phase II 2018 Department of DefenseAir Force
  10. Additive Manufacturing for Microwave Vacuum Electron Device Cost Reduction

    SBC: Radiabeam Technologies, LLC            Topic: N16AT010

    The Department of the Navy has a need for the development of an additive manufacturing (AM) process for key vacuum electronic device components to meet on-demand, flexible, and affordable manufacturing requirements. The goal of this Phase II effort is to develop and validate Electron Beam Melting (EBM) additive manufacturing (AM) technology for the production of vacuum electronic devices meeting t ...

    STTR Phase II 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government