You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. System for Nighttime and Low-Light Face Recognition

    SBC: Systems & Technology Research LLC            Topic: SOCOM18A001

    Face recognition performance using deep learning has seen dramatic improvements in recent years. This improvement has been fueled in part by the curation of large labeled training datasets with millions of images of hundreds of thousands of subjects.This results in effective generalization for matching over pose, illumination, expression and age variation, however these datasets have traditionally ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  2. System for Nighttime and Low-Light Face Recognition

    SBC: MUKH Technologies LLC            Topic: SOCOM18A001

    Recognizing faces in low-light and nighttime conditions is a challenging problem due to the noisy and poor quality nature of the images.Thermal imaging is often used to obtain facial biometric in such conditions. Thermal face images, while having a strong signature at nighttime, are not typically maintained in biometric-enabled watch lists and so must be compared with visible-light face images to ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  3. Structurally efficient CMC-PMC air frames

    SBC: Physical Sciences Inc.            Topic: N18AT024

    The Physical Sciences Inc. (PSI) Team consisting of PSI, Draper Laboratories (Draper), and an airframe integrator are proposing a tunable hybrid composite structure capable of increasing the thermal operating performance by 500 C over conventional polymer matrix composites (PMCs). Our multifunctional composite approach combines PSIs low cost quasi-isotropic Ceramic Matrix Composite (CMC) system, a ...

    STTR Phase I 2018 Department of DefenseNavy
  4. Internet of Things (IoT) Agent (IoTA) Framework for Evaluating Effectiveness and Efficiency

    SBC: RAM LABORATORIES            Topic: N18AT027

    The Internet of Things (IoT) is increasingly being used to create smart platforms where operators are being removed from the loop. These smart capabilities include collaborative IoT sensors and platforms that are self-aware and provide capabilities of self-prediction, self-configuration, and self-maintenance. To fully take advantage of these advances, however, testbeds and frameworks are needed to ...

    STTR Phase I 2018 Department of DefenseNavy
  5. Layered Inference for Cyber Network Knowledge Synthesis (LINKS)

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: N18AT019

    Providing effective cyber defense for the DoD is compounded by the fact there is not a single physical or logical entity that defines cyberspace. In reality, DoD networks are often composed of three disparate but interacting layers: a physical layer that defines the structure of the network (e.g., computers and routers), a logical layer that represents the static or dynamic state of data within th ...

    STTR Phase I 2018 Department of DefenseNavy
  6. Active Imaging through Fog

    SBC: SA PHOTONICS, LLC            Topic: N18AT021

    Active imaging systems are used to for imaging in degraded visual environments like that found in marine fog and other environments with a high level of attenuation and scattering from obscurants like fog, rain, smoke, and dust.These systems are still limited in range and resolution. SA Photonics is taking advantage of multiple image enhancement techniques, like wavelength tunability, pulse contro ...

    STTR Phase I 2018 Department of DefenseNavy
  7. Accurate Flow-Through Conductivity Sensor for Autonomous Systems

    SBC: D 2 INC            Topic: N18AT022

    UUVs have become increasingly important tools in the collection of environmental data. Their unique ability to operate independent of surface vessel conditions allows oceanographic seawater measurements when traditional means is not possible. Historically sensor packages for UUVs have been based on adaptions of ship deployed equipment. Recent development in sensors, such as the Hybrid Flow Through ...

    STTR Phase I 2018 Department of DefenseNavy
  8. Novel Cooling System for Laser Enclosure

    SBC: Photonwares Corporation            Topic: N18AT001

    We propose to utilize a laser 3D printing manufacturing technique to realize an ultra high efficiency micro-channel laser head cooling system with high thermal load capacity in a small volume package. The new approach incorporates key technical innovations that drastically increase the forced water flow interaction surface area and the metal thermal conductivity. The approach enables conformal geo ...

    STTR Phase I 2018 Department of DefenseNavy
  9. Underwater Blast Injury Monitoring

    SBC: TRITON SYSTEMS, INC.            Topic: DHA17C002

    Triton Systems, Inc. proposes to develop a piezo-textile that can capture underwater explosion pressure wave patterns to ultimately establish and monitor for injury risk severity. We propose to use a state-of-the-art piezo-textile to which we will apply our own proprietary treatments.We will assess our textiles pressure detection performance and durability against a non-textile piezoelectric array ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  10. Innovative additive manufacturing (AM) process for successful production of 7000 series aluminum alloy components using Smart Optical Monitoring Syste

    SBC: SENSIGMA LLC            Topic: N18AT005

    Naval aircraft components are routinely made of 7000 series aluminum alloys due to their strength, weight and fatigue properties. Present Additive Manufacturing (AM) processes falls short of producing 7000 series Al alloys successfully due to lack of porosity, thermal and composition control. In-situ methods implemented to date largely only yield information about the component surface and other m ...

    STTR Phase I 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government