You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Additive Manufacturing of 17-4 PH Stainless Steel Metal Matrix Composites using Nickel functionalized Carbon Nanotubes

    SBC: SHEPRA, INC.            Topic: N16AT007

    Additive Manufacturing (AM) has a potential to significantly reduce the cost and lead time associated with the maintenance and sustainment issues faced by the US Navy. However, current materials such as 17-4 PH Stainless Steel typically achieve half the required mechanical properties when additively manufactured, thus limiting the use of AM in critical parts. Recent advancements in carbon nanotube ...

    STTR Phase I 2016 Department of DefenseNavy
  2. Nanoporous block polymer separators for high performance and safe Li-ion batteries

    SBC: ADA TECHNOLOGIES, INC.            Topic: N16AT008

    To meet Navy needs for high performance and safe lithium ion (Li-ion) batteries for naval aircraft, ADA Technologies Inc. (ADA) and its university collaborator propose to develop and optimize tailor designed nanoporous separators derived from functionalized block copolymers (polyolefins) with low cost precursors. The innovative strategy provides a powerful tool to allow exquisite tuning of perform ...

    STTR Phase I 2016 Department of DefenseNavy
  3. Medium Voltage Direct Current (MVDC) Fault Detection, Localization, and Isolation

    SBC: ISSAC Corp            Topic: N16AT009

    The ISSAC Team leverages existing knowledge and expertise in power system monitoring, fault identification, localization and isolation in conjunction with rich, deep data analytics for pattern matching to devise a system for Medium Voltage Direct Current (MVDC) power system fault management. Because of the differences between AC and DC power grids there are a significant number of problems in deal ...

    STTR Phase I 2016 Department of DefenseNavy
  4. Medium Voltage Direct Current (MVDC) Fault Detection, Localization, and Isolation

    SBC: IAP RESEARCH, INC.            Topic: N16AT009

    In this phase I we propose to extend our work on MVDC isolation device to include fault detection, and fault localization circuitry. We have previously developed under an SBIR a 6 kVDC, 2000A isolation device that was built and tested in MVDC ship distribution system laboratory at FSU CAPS. In this phase I we propose to use rogowski coils and hall effect probes to detect faults and we propose to a ...

    STTR Phase I 2016 Department of DefenseNavy
  5. Fully Encapsulating Dielectrics for Gaseous Helium Cooled Superconducting Power Cables

    SBC: TAI-YANG RESEARCH COMPANY            Topic: N16AT011

    The Navys Next Generation Integrated Power Systems (NGIPS) for on shore, surface ships, and underwater vehicles will require novel power distribution systems. State of the art prime mover power generation and high power directed weapons require power distribution cables that surpass conventional copper cable capabilities. As such, the Navy has determined that electrical power systems must increase ...

    STTR Phase I 2016 Department of DefenseNavy
  6. Fully Encapsulating Dielectrics for Gaseous Helium Cooled Superconducting CORC Power Cables

    SBC: ADVANCED CONDUCTOR TECHNOLOGIES LLC            Topic: N16AT011

    Future power systems on board Navy ships require electrical power in the order of 20 to 80 MW, which currently cant be provided by conventional copper or aluminum power cables. Advanced Conductor Technologies LLC (ACT) has been developing high-temperature superconducting Conductor on Round Core (CORC) power transmission cables, rated at 10 kA per phase, for the Navy that form a potential solution ...

    STTR Phase I 2016 Department of DefenseNavy
  7. Medium Voltage Direct Current (MVDC) Grounding System

    SBC: CONTINUOUS SOLUTIONS LLC            Topic: N16AT012

    The main focus of this research will be to develop effective modeling toolboxes to analyze CM current/voltage behaviors and fault conditions at any part of the power system in a cost and time effective way. The toolbox will assist with grounding strategies and enhance the baseline design. A CM equivalent circuit model [3] has been developed to analyze the CM current/voltage behaviors. In this work ...

    STTR Phase I 2016 Department of DefenseNavy
  8. Low-cost Thermal Management Technology for Combat Systems Computers

    SBC: Engineering And Scientific Innovations Inc.            Topic: N16AT014

    Using a fluid dynamic energy separation technique, in combination with thermoelectric generators (TEGs), a unique hybrid cooling system using low grade waste heat is proposed. This system uses the concept of fluid structure interactions and vorticity redistribution to produce large levels of vorticity within working fluid and thereby generate large temperature gradients in the working fluid which ...

    STTR Phase I 2016 Department of DefenseNavy
  9. Modular Thermal Management System for Electronics Enclosures

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N16AT014

    As Navy combat systems evolve, the heat loads produced by electronics enclosures continues to increase. Legacy thermal management techniques for these enclosures such as liquid cooling coupled to the ship chilled water supply and direct air cooling of the cabinets require infrastructure such as pipes and ducts which are expensive to install and reconfigure. Mainstream proposes to design a vapor co ...

    STTR Phase I 2016 Department of DefenseNavy
  10. Durable, Multifunctional, Thermal Barrier Coatings for Marine Gas Turbines

    SBC: RELIACOAT TECHNOLOGIES, LLC            Topic: N16AT019

    Due to high power density and durability, gas turbines provide significant benefits in terms of efficiency and performance that in recent years, marine gas turbines have been deployed in commercial and cruise ships. Marine gas turbine technologies are essentially extensions of aero-gas turbine technology. Aero, land and marine engines have been used successfully for decades, recently there have be ...

    STTR Phase I 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government