You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Programmable Multi-Frequency Transmitter

    SBC: Space Micro Inc.            Topic: MDA16T005

    Space Micro and partner institution Arizona State University propose to design and prototype a Programmable Multi-Frequency Transmitter (PMFT) that is compliant with both the Kill Vehicle Modular Open Architecture (KVMOA) and Space Telecommunications Radio System (STRS) standards. The KVMOA maximizes reuse of components and system designs and reduce total ownership costs. The STRS standard allows ...

    STTR Phase I 2017 Department of DefenseMissile Defense Agency
  2. Programmable Multi-Frequency Transmitter

    SBC: ATMOSPHERIC & SPACE TECHNOLOGY RESEARCH ASSOCIATES LLC            Topic: MDA16T005

    Future, large footprint weapon systems can benefit from a multi-frequency telemetry system that provides support for multiple bands and various Advanced Range Telemetry (ARTM) waveforms. The overarching objective of the proposed research is to develop a low power, miniaturized, multi-frequency transmitter for intelligent missile flight test applications. The system will remotely relay telemetry da ...

    STTR Phase I 2017 Department of DefenseMissile Defense Agency
  3. Propulsion Modeling

    SBC: Metacomp Technologies, Inc.            Topic: MDA09T009

    The occurrence of combustion instability has long been a matter of serious concern in the development of liquid-propellant rocket engines due to the high rate of energy release in a confined volume in which energy losses are relatively small. Positive feedback between the acoustic waves and unsteady combustion could lead to the destruction of an engine in a fraction of a second. The situation is ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  4. RF-IR Data Fusion

    SBC: DECIBEL RESEARCH, INC.            Topic: MDA12T002

    The development and integration of three unique and innovative algorithm prototypes into a"Fused Track and Characterization Schema"are proposed. This Schema will encompass the determination of signatures and characteristics of objects that can be identified by RF and EO/IR Sensors in order to enable multi-sensor data fusion and correlation. The first algorithm, the"3D Pose Estimation"Algorithm, p ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  5. Smallsat Cryocooler System

    SBC: IRIS TECHNOLOGY CORPORATION            Topic: MDA17T003

    The Iris Technology team which also include Northrop Grumman Aerospace Systems (NGAS) and the University of Wisconsin, is attacking the problem of high-efficiency, low-volume, space-qualified cryocooler systems.The team has a firm starting point by leveraging the Northrop Grumman Microcryocooler and the Iris Technology mLCCE (Miniature Low Cost Control Electronics).TMU enhancement will start with ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  6. SmallSat Stirling Cryocooler for Missile Defense (SSC-X)

    SBC: WECOSO, INC.            Topic: MDA17T003

    West Coast Solutions (WCS), in collaboration with the Georgia Institute of Technology and Creare LLC, proposes an adaptation of our SmallSat Stirling Cryocooler (SSC) technology in response to STTR Topic MDA17-T003: High-Efficiency, Low-Volume, Space-Qualified Cryogenic-Coolers. In Phase 1 we will scale up a design currently in development for NASA to meet the Missile Defense Agency (MDA) topic re ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  7. Software Defined Multi-Channel Radar Receivers for X-band Radars

    SBC: DGNSS Solutions, LLC            Topic: MDA09T003

    The primary objective of the proposed research is to develop proof of concept of a software programmable X-Band radar system using low cost antenna array technology with digital beamforming architecture based on multiple receiver channels. The performance objectives will aim at a minimum of 400 MHz instantaneous bandwidth and a minimum instantaneous dynamic range of 52 dB. The objective of the t ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  8. Storable Clean Ethane/ethylene Nitrous Engine (SCENE)

    SBC: PIONEER ASTRONAUTICS            Topic: MDA18T005

    he Storable Clean Ethane-ethylene Nitrous Engine (SCENE) is a proposed technology designed to provide upper stages and spacecraft with non-toxic, liquid, non-cryogenic, high-performance propulsion with an Isp on the order of 300 seconds. The propellant components are stored as liquids under their saturated vapor pressures. With the SCENE, nitrous oxide is used as an autogenously pressurized oxidiz ...

    STTR Phase I 2019 Department of DefenseMissile Defense Agency
  9. System for Nighttime and Low-Light Face Recognition

    SBC: POLARIS SENSOR TECHNOLOGIES INC            Topic: SOCOM18A001

    The objective of this proposal is to develop instrumentation and algorithms for acquiring facial features for facial recognition in low- and no-light conditions.We will use cross-spectrum matching by exploiting infrared polarimetric imagery which tends to show features that match more closely visible imagery than conventional infrared.In addition to thermal infrared, we will also test subjects in ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  10. Test Article Printing with Laser Additive Manufacturing (TAP-LAM) for Threat Surrogate Target Production

    SBC: MV Innovative Technologies LLC (DBA: Opt            Topic: MDA17T001

    Optonicus proposes development of the TAP-LAM (Test Article Printing with Laser Additive Manufacturing for Threat Surrogate Target Production) powder bed fusion and directed energy depositions systems. The TAP-LAM metal additive manufacturing system will advance strategic missile defense system testing capabilities by improving 3D printing methods to rapidly produce large-scale threat surrogate ta ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government