You are here
Award Data
The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.
Download all SBIR.gov award data either with award abstracts (290MB)
or without award abstracts (65MB).
A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.
-
Power-Dense Electrical Rotating Machines for Propulsion and Power Generation
SBC: CONTINUOUS SOLUTIONS Inc Topic: N19AT007The primary objective is to develop electric machine/drive topologies and power architectures that achieve the power densities required for 50% more power without the increase in weight or space requirements. In addition to PMSM-based designs, two new machine topologies will be considered. The first is a trapped flux coreless (TFC) machine that utilizes superconducting pucks made of YBCO to produc ...
STTR Phase I 2019 Department of DefenseNavy -
Autonomous Navigation for the Hull Bug Ship Hull Grooming System
SBC: SEAROBOTICS CORP Topic: N18AT020The underpinning science and sensing associated with autonomous navigation is advancing on numerous fronts. The navigation capability required for ship hull grooming in a low visibility environment is a natural application of this technology. Enormous benefit will be realized in the public and private sectors of the shipping industry. The economic and environmental impact realized using proactive ...
STTR Phase I 2018 Department of DefenseNavy -
Development of Surface Reaction Mechanism for C-SiC-SiO2-Rubber Composite Oxidation in Extreme Oxidizing Condition
SBC: CFD RESEARCH CORPORATION Topic: N10AT005The purpose of this STTR is to develop comprehensive detailed kinetics for oxidation of C-SiC-SiO2-rubber in extreme oxidizing environment. This material is used as a coating on the outer surface of Navy weapon systems. In order to predict the fate of this material under extreme conditions and mitigate the degradation of the coating, a comprehensive oxidation mechanism is required. In Phase I, CFD ...
STTR Phase I 2010 Department of DefenseNavy -
Multi-scale modeling of corrosion fatigue damage using peridynamics theory
SBC: CFD RESEARCH CORPORATION Topic: N13AT007The overall objective of this effort is to identify, and validate a suitable methodology and the associated multi-scale computational technique for predictive assessment of corrosion fatigue damage in Naval aircraft. Annual costs for corrosion inspection and repair of military aircraft are estimated to exceed $1B. Predictive modeling of corrosion fatigue damage is challenging since it has to captu ...
STTR Phase I 2013 Department of DefenseNavy -
Novel Circulating RNA-based Markers as Diagnostic Biomarkers of Infectious Diseases
SBC: CFD RESEARCH CORPORATION Topic: CBD18A001In resource limited settings, rapid and accurate diagnosis of infections is critical for managing potential exposures to highly virulent pathogens,whether occurring from an act of bioterrorism or a natural event. This is especially important for hard to detect intracellular bacterial andalphavirus infections, that overlap symptomatically and often treated empirically due to a lack of reliable and ...
STTR Phase I 2018 Department of DefenseOffice for Chemical and Biological Defense -
Data Analytics and Machine Learning Toolkit to Accelerate Materials Design and Processing Development
SBC: CFD RESEARCH CORPORATION Topic: N19AT020Navy has identified refractory high entropy alloy (RHEA) and metal additive manufacturing as two potential areas of interest. This includes designing new RHEA and optimizing metal additive manufacturing with specific material property requirements. Developing materials and processes via applying traditional experimentation and process optimization techniques is painfully slow due to the large numb ...
STTR Phase I 2019 Department of DefenseNavy -
A Hierarchical and Extendable, Component-Based Simulation Tool for Aircraft Thermal Management Systems
SBC: CFD RESEARCH CORPORATION Topic: N19BT025The requirements for thermal management on tactical aircraft systems have reached a level at which integrated system design must be considered early in the aircraft design process. An integrated propulsion, power and thermal modeling and simulation design approach is necessary for reduced size, weight and power requirements. At the same time, there is an urgent need for capabilities that enable an ...
STTR Phase I 2019 Department of DefenseNavy -
GECCO: Gecko-gripper for EOD with Cavitation Cleaning Operation
SBC: VALOR ROBOTICS, LLC Topic: N19AT011The objective of the Phase I proposal is to investigate the application of controlled cavitation cleaning technology in conjunction with gecko-inspired mechanical adhesion and soft elastomeric applicators for use in non-intrusive EOD operations. This investigation requires the proof-of-concept testing and validation of a controlled cavitation cleaning mechanism, and a soft robotic gecko-inspired m ...
STTR Phase I 2019 Department of DefenseNavy -
Progressive Model Generation for Adaptive Resilient System Software
SBC: SECURBORATION, INC. Topic: N13AT014Complex software systems are typically developed by disparate engineering teams working concurrently. At the same time, software requirements are frequently dynamic, evolving even during active development cycles. Discrepancies between how software is defined and how it is implemented at the modular level can cascade into critical system errors when modules are integrated. More troubling is that i ...
STTR Phase I 2013 Department of DefenseNavy -
Information-based Norms on Flow, Operations, and Traffic Over Networks (INFOTON)
SBC: ISEA TEK, LLC Topic: N18AT027The Internet of Things (IoT) connects people, data, and "things" (e.g., software, sensors, platforms), facilitating the translation of information into actions. Although naval platforms’ networks and communication suites have evolved significantly in the past few years to support such required connectivity, one of the greatest technical challenges still facing the military community is the proce ...
STTR Phase I 2018 Department of DefenseNavy