You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. A Pressure-Dependent Detailed Chemical Kinetic Model for JP-10 Combustion

    SBC: REACTION ENGINEERING INTERNATIONAL            Topic: N09T011

    Investigations into JP-10 combustion chemistry thus far can be characterized as preliminary. The detailed chemical kinetic mechanisms that have been published are limited in their ability to reproduce experimental data. The combustion chemistry of JP-10 is highly complex, involving hundreds if not thousands of species and thousands of chemical reactions. A detailed kinetic model capable of predict ...

    STTR Phase II 2010 Department of DefenseNavy
  2. Probabilistic Prediction of Location-Specific Microstructure in Turbine Disks

    SBC: SCIENTIFIC FORMING TECHNOLOGIES CORPORATION            Topic: N10AT028

    While there are established methods available in determining the fatigue life of critical rotating components, there is still room for improvement for better understanding and prediction of life limiting factors. Improved risk assessment of jet engine disk components would require probabilistic modeling capability of the evolution of microstructural features, residual stresses and material anomali ...

    STTR Phase I 2010 Department of DefenseNavy
  3. iDiver: Underwater Text Messaging and Locating System for Divers

    SBC: SCIENTIFIC SYSTEMS CO INC            Topic: N10AT034

    Diver communication is vital for the US Navy while carrying out strategic underwater missions. Diver-to-diver communication and diver-to-vehicle communication can allow the sharing of information as it is discovered and also enable performing cooperative maneuvers. Emergency situations can also benefit from such communication. In addition to the communication capability, it would be useful to know ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Autonomous Landing at Unprepared Sites for a Cargo Unmanned Air System

    SBC: SCIENTIFIC SYSTEMS CO INC            Topic: N10AT039

    Scientific Systems and Brigham Young University will develop and test an autonomous helicopter landing system using vision-based navigation and control.

    STTR Phase I 2010 Department of DefenseNavy
  5. Buoyant Active Sensor System (BASS) for Riverine Mapping

    SBC: SCIENTIFIC SYSTEMS CO INC            Topic: N10AT024

    There is need for fast, easy-to-operate, and low-risk methods for mapping geography, velocity, and bathymetry of rivers. River charts can be nonexistent or inadequate because of changes in water volume, tides, sediment transport, flooding, and other events. This is a hindrance and a hazard for navigation and other operations. Currently, procedures to map rivers involve navigating surface vessels i ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Implementation and performance evaluation of the Fast On-line pREdiCtion of Aircraft State Trajectories (FORECAST) System

    SBC: SCIENTIFIC SYSTEMS CO INC            Topic: N09T005

    The main objective of the Phase II work is to enhance the FORECAST algorithms developed in Phase I, extend them to 3D in the case of multi-rate sensors and significant wind effects, develop effective tuning procedures, and evaluate the performance of the FORECAST system on test data. In order to achieve these objectives, we plan to carry out the following tasks: (i) Extend FORECAST algorithms to 3 ...

    STTR Phase II 2010 Department of DefenseNavy
  7. Structurally Integrated Wideband Low Profile Metamaterial Antenna (1000-161)

    SBC: SI2 TECHNOLOGIES, INC            Topic: N10AT021

    SI2 Technologies, Inc. (SI2) proposes an innovative solution to the Navy’s need for wideband antennas to support naval ships and Marine Corps’ vehicle communications, electronic warfare (EW), and radar functions. SI2 will develop efficient, broadband, metamaterial antennas for operation in the VHF-UHF frequency range. These antennas will initially be designed for integration with the composite ...

    STTR Phase I 2010 Department of DefenseNavy
  8. A Rugged and Miniaturized Optical Coagulation Monitor

    SBC: SPECTRAL SCIENCES INC            Topic: N10AT043

    A team consisting of Spectral Sciences Inc., Boston University, Boston University Medical School, Radcliffe Consulting and Brighton Consulting will collaborate to develop and validate a novel optical device for the monitoring and evaluation of blood coagulation. In this proposal we describe a novel optical blood coagulation monitoring instrument. The instrument has no moving parts, uses very small ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Manufacturing of Physical Scale Models for Signature Reduction

    SBC: TEXAS RESEARCH INSTITUTE , AUSTIN, INC.            Topic: N09T016

    The suppression of a ship’s magnetic signature is important in the effort to thwart detection by adversarial forces and prevent engagement with magnetic fused weapons. There are two ways to model ship magnetic signatures; through the use of finite element based analytical models and through the use of physical scale models (PSM). Finite element based analytical models are less expensive and have ...

    STTR Phase II 2010 Department of DefenseNavy
  10. Probabilistic Prediction of Location-Specific Microstructure in Turbine Disks

    SBC: UES INC            Topic: N10AT028

    Thermo-mechanical processes of turbine disks have been progressively improved to meet microstructural requirements tailored for advanced, sustainable high temperature performances. However, the chemistry of typical Ni-base turbine disk alloys is very complex, and yields a variety of phases and microstructural anomalies under different thermo-mechanical heat treatments. These microstructural hetero ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government