You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Tools for Modeling & Simulation of Molecular and Nanomaterials for Optically Responsive Devices

    SBC: UES INC            Topic: AF09BT30

    Military applications for CBRNE/GWTO and C4ISR require R&D for materials to protect personnel and equipment. However, challenges remain in experimental synthesis and characterization of new materials, such as providing insight into observed properties for further advancement. Thus, it is essential to develop a predictive modeling and simulation approach that will not only provide a fundamental u ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Thermoelectric material-coated carbon nanotubes as high conductivity thermal interface materials

    SBC: ADA TECHNOLOGIES, INC.            Topic: AF09BT22

    The ever-decreasing size of the electronic microchips and the ever-increasing density of electronic components required to support future Air Force platforms are creating the problem of substantial localized heat generation that can impair component operation. State of the art thermal interface materials (TIMs), that are used to dissipate heat from the source to the spreader in a microchip, are se ...

    STTR Phase I 2010 Department of DefenseAir Force
  3. Narrowband microbolometer arrays for infrared chemical sensing

    SBC: ITN ENERGY SYSTEMS, INC.            Topic: A10AT023

    This Small Business Technology Transfer Research program will develop narrow band plasmonic resonant cavity filters with integrated microbolometer sensors operating in the long wave infrared (LWIR) atmospheric transmission band for IR absorption measurements of low concentration chemicals. IR spectroscopy can identify a wide range of contaminants, including chemical/biological warfare agents, exp ...

    STTR Phase I 2010 Department of DefenseArmy
  4. MEMS based thermopile infrared detector array for chemical and biological sensing

    SBC: BFE Acquisition Sub II, LLC            Topic: A10AT004

    Thermopile arrays manufactured using integrated process compatible materials and micro-machining will provide high performance with low manufacturing cost. Black Forest Engineering (BFE) teamed with Case Western Reserve University will design thermopiles using silicon based semiconductors and compare performance. Low cost thermopiles, differentially coupled with advanced BFE CMOS readout, will pr ...

    STTR Phase I 2010 Department of DefenseArmy
  5. Passive Infrared Detection of Aerosolized Bacterial Spores

    SBC: DECIBEL RESEARCH, INC.            Topic: A10AT019

    deciBel Research and our university partner, Rochester Institute of Technology (RIT)-Center for Imaging Science, propose to develop a dual MWIR/LWIR imaging polarimeter for the detection and discrimination of aerosolized biological spores. The system will exploit spectral absorption and MIE scattering-induced radiometric and polarimetric phenomenon exhibited by clouds of aerosolized biological spo ...

    STTR Phase I 2010 Department of DefenseArmy
  6. An Automated, High Throughput, Filter-Free Pathogen Preconcentrator

    SBC: CFD RESEARCH CORPORATION            Topic: A10AT016

    Accurate real-time waterborne pathogen detection is of paramount importance to security of U.S. military forces and installations. Fieldable high-throughput pathogen concentration is a critical analytical need for enhanced detection performance. Existing concentration methods are time-consuming, bulky, labor-intensive, power- and reagent-hungry, and consequently ill-suited for battlefield deployme ...

    STTR Phase I 2010 Department of DefenseArmy
  7. Terahertz Focal Plane Arrays

    SBC: Aegis Technologies Group, LLC, The            Topic: AF09BT33

    Recent advances in THz-source stability, power and practicality have opened the door for active THz imaging in both commercial and military settings. AEgis is teaming with U Buffalo to develop a THz detection device that utilizes classical rectification effects in semiconductor point contacts (SPCs) to achieve response in the 1 to 10 THz range and is capable of operating at temperatures over 150 K ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. Multi-Scale, Multi-Resolution Network Information Flow Monitoring and Understanding

    SBC: Intelligent Automation, Inc.            Topic: AF09BT15

    Communication networks can be viewed and analyzed as information flows, which can be better understood with practical design guidelines by capturing the complex interactions across essential network properties and tasks. Intelligent Automation Inc. and its subcontractor propose a novel unifying approach for multi-scale, multi-resolution network information flow modeling and analysis. We introduce ...

    STTR Phase I 2010 Department of DefenseAir Force
  9. Random Number Generation for High Performance Computing

    SBC: Silicon Informatics, Inc.            Topic: A10AT012

    Highly scalable parallel random number generators (RNGs) will be developed, evaluated and implemented for use in high performance computing on thousands of multi-core processors and general purpose graphics processing units. The main contributions are: (a) design and implementation of new parallel test methods that capture the inter-stream correlations exhibited in practice and complement the curr ...

    STTR Phase I 2010 Department of DefenseArmy
  10. Ultraviolet Acousto-Optic Devices Using Barium Borate (BBO)

    SBC: BRIMROSE TECHNOLOGY CORP            Topic: A10AT008

    We will develop novel acousto-optic devices for use in the UV using the new material Barium Borate (BBO) which not only has the required UV transparency, but a unique combination of acoustic and optical properties. The capabilities provided by these new UV AO devices are ideally suited for optical addressing arrays of trapped ions with focused spots from appropriately tuned UV and visible lasers t ...

    STTR Phase I 2010 Department of DefenseArmy
US Flag An Official Website of the United States Government