You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Incremental Learning for Robot Sensing and Control

    SBC: Net-Scale Technologies, Inc.            Topic: A09AT030

    This proposal addresses key open challenges identified during the LAGR program for the practical use of adaptive, vision-based robot navigation in commercial settings. First, the adaptive vision system learns quickly, but forgets as quickly. This will be addressed by using an ensemble of "expert" classifiers, each of which specializes for a particular environment and can be quickly activated when ...

    STTR Phase I 2010 Department of DefenseArmy
  2. Distributed Fiber Optic Twist Measurement in Shape Sensing Tethers

    SBC: Luna Innovations Incorporated            Topic: N08T029

    Existing methods to provide cable orientation and array element localization in the Navy’s fixed and towed array systems and tethered unmanned vehicles rely on devices embedded in the cable itself, such as hydrophones, magnetic heading and orientation sensors, and accelerometers. These traditional sensors have power, weight, space, and EMI budgets within the cable that require design compromises ...

    STTR Phase II 2010 Department of DefenseNavy
  3. Advanced Computational Methods for Study of Electromagnetic Compatibility

    SBC: HYPERCOMP INC            Topic: AF09BT13

    The leakage of electromagnetic (EM) energy into air vehicles, and particularly into ordnance, poses a hazard that requires careful evaluation. Under current guidelines, such evaluations are primarily to be carried out through extensive testing of items under possible field conditions, a process that can be both time-consuming and costly. The scope of this STTR Phase I activity is to implement a h ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Intelligent In-Situ Feature Detection, Extraction, Tracking and Visualization For Turbulent Flow Simulations

    SBC: JMSI, INC            Topic: AF08T017

    The Phase II STTR project proposed herein presents a new methodology that Detect, Ex-tract, Track and Display features in a CFD solution. BENEFIT: It is projected that his work will impact the Air Force’s procurement methods through improved analysis capabilities in: 1. Aerostructures analysis 2. Weapons bay and structural acoustics analysis 4. Active flow control analysis 5. High lift syste ...

    STTR Phase II 2010 Department of DefenseAir Force
  5. Incremental Learning for Robot Sensing and Control

    SBC: SET ASSOC. CORP.            Topic: A09AT030

    SET Corporation, together with Carnegie Mellon University''s National Robotics Engineering Center (NREC), will develop a system that leverages state-of-the-art sensing, perception, and machine learning to provide trafficability assessments for UGVs for agricultural, security and military applications. It will consist of a set of proprioceptive and exteroceptive sensors that provide rich data about ...

    STTR Phase I 2010 Department of DefenseArmy
  6. Distributed Adaptive Control of Engine Systems

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: AF08T026

    Aurora and Georgia Tech’s Phase I efforts demonstrated the feasibility of a partially distributed control scheme with separate controllers on the engine core and fan, where the controllers are linked by a supervisory controller. This scheme is representative of the situation encountered in VTOL UAV design and the design of new turbo-props and variable pitch turbofans by the large commercial gas ...

    STTR Phase II 2010 Department of DefenseAir Force
  7. Distributed Adaptive Control of Engine Systems

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: AF08T026

    Aurora and Georgia Tech"s Phase I efforts demonstrated the feasibility of a partially distributed control scheme with separate controllers on the engine core and fan, where the controllers are linked by a supervisory controller. This scheme is representative of the situation encountered in VTOL UAV design and the design of new turbo-props and variable pitch turbofans by the large commercial gas t ...

    STTR Phase II 2010 Department of DefenseAir Force
  8. High-order modeling of applied multi-physics phenomena

    SBC: HYPERCOMP INC            Topic: AF08T023

    The gap between research in numerical methods and popular commercial solvers in CFD and related areas has been gradually widening in the recent past, particularly in the realm of high order accurate algorithms. At HyPerComp we are advancing a suite of high order codes based on the discontinuous Galerkin (DG) technique that can be used in electromagnetics, fluid mechanics, MHD and radiative heat tr ...

    STTR Phase II 2010 Department of DefenseAir Force
  9. Innovative Application of Urban ISR (Intelligence, Surveillance, Reconnaissance) Imagery for High Fidelity Training Devices

    SBC: CG2, Inc.            Topic: N09BT038

    In today’s information age, there are vast resources of data on every region of the Earth. The application of geospecific imagery over large areas has been limited to terrain for the most part. The hindrances to full use of geospecific imagery are the labor required to create the databases, and limits on the rendering capacity of current image generators (IGs), both in polygon count and texture ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Innovative Application of Urban ISR (Intelligence, Surveillance, Reconnaissance) Imagery for High Fidelity Training Devices

    SBC: AECHELON TECHNOLOGY            Topic: N09BT038

    Military operations in urban areas have increasingly become a key capability for our armed forces. The increased risk of use of the unique nature of large urban environments by hostile forces to their tactical advantage, and related civilian casualties, requires updated procedures, comprehensive training, and constantly evolving capabilities. Current training technologies fail to address the signi ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government