You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Plasmonic Logic Devices

    SBC: Luna Innovations Incorporated            Topic: AF08BT18

    Digital electronics is approaching its limits in meeting the demand for increased processing speeds. Photonics, while promising high processing speed, is lacking integration capacity. Plasmonics promises to combine the information capacity of photonics with the integration density of electronics. The team of Luna Innovations, UCLA and Virginia Tech proposes to develop plasmonic logic devices and c ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Hybrid Carbon-Metal Nanowires Mediating Direct Electron Transfer from Redox Enzyme to Electrode

    SBC: Luna Innovations Incorporated            Topic: AF09BT03

    The electron transferring unit of enzymes – apoenzyme and cofactor are deeply buried inside its protein structure, therefore efficient electronic communication between the electrode and the biocatalytic enzyme is inefficient. The development of a reproducible approach that allows efficient electronic connection between enzymes and electrodes would meet the major technical needs in the developmen ...

    STTR Phase I 2010 Department of DefenseAir Force
  3. High Speed Carbon Nanosheet Supercapacitors

    SBC: Luna Innovations Incorporated            Topic: AF09BT05

    Using its novel carbon nanosheet technology, Luna Innovations will develop a Supercapacitor with the highest energy densities available in the microsecond to millisecond response times. Nanosheets are vertically aligned graphene sheets that can be grown on a wide variety of substrates without catalyst and have an open, accessible surface area that eliminate the resistance due to pores that cause ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Instrumentation for hypersonic, air-breathing engines

    SBC: Luna Innovations Incorporated            Topic: AF09BT32

    Luna Innovations Incorporated and CURBC (Calspan – University of Buffalo Research Center) are proposing to develop miniature, high-speed, high-temperature, fiber-optic pressure sensors that will fill the void that currently exists between ground and flight test instrumentation. The sensors small size (ø 0.007”) and high-sensitivity (better than ±0.01 psi) combined with a high-speed fiber-op ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Distributed Fiber Optic Twist Measurement in Shape Sensing Tethers

    SBC: Luna Innovations Incorporated            Topic: N08T029

    Existing methods to provide cable orientation and array element localization in the Navy’s fixed and towed array systems and tethered unmanned vehicles rely on devices embedded in the cable itself, such as hydrophones, magnetic heading and orientation sensors, and accelerometers. These traditional sensors have power, weight, space, and EMI budgets within the cable that require design compromises ...

    STTR Phase II 2010 Department of DefenseNavy
  6. Development of Advanced Energetic Oxidizers for Solid Propellant applications.

    SBC: FLUOROCHEM, INC.            Topic: N09T017

    The objective of this program is to design advanced energetic oxidizers superior to ammonium perchlorate (AP), develop methods for their preparation, and characterize the products. The overall goal of the Phase II program with options is to make the technology ready for commercialization

    STTR Phase II 2010 Department of DefenseNavy
  7. Topological Data Analysis and Wide Area Detection of Chemical and Biological Contamination

    SBC: FOLDED STRUCTURES COMPANY LLC            Topic: A10AT020

    Topological data analysis is a new mathematical method used to study these massive data sets that arise in a variety of situations including military operations and national security. The use of passive infrared sensors for a wide area detection system involving chemical and biological contaminants produces massive amounts of hyperspectral image data. Recent research in this area include fast al ...

    STTR Phase I 2010 Department of DefenseArmy
  8. Random Number Generation for High Performance Computing

    SBC: Frontier Technology Inc.            Topic: A10AT012

    Frontier Technology, Inc. and University of Rhode Island Physics department propose to develop innovative, scalable random number generators for use on multiple parallel computing architectures. Our Phase I effort will include a comprehensive assessment of currently available algorithms for parallel random number generation as well as the currently available tests designed to uncover statistical d ...

    STTR Phase I 2010 Department of DefenseArmy
  9. Linking Output Activity to Outcomes/Impacts in Complex Contingency Environments

    SBC: Frontier Technology Inc.            Topic: OSD08T003

    As the U.S. Government increases participation in post-conflict Stabilization and Reconstruction Operations (SARO) around the globe, the ability to understand the relationships between task completion and mission completion is critical. The US Government employs a metrics tool developed though the Monitoring Progress in Conflict Environments project. The objective of this Phase II STTR is to provi ...

    STTR Phase II 2010 Department of DefenseArmy
  10. Adaptive Learning for Stall Pre-cursor Identification and General Impending Failure Prediction

    SBC: Frontier Technology Inc.            Topic: N10AT008

    Frontier Technology, Inc. (FTI) and Northeastern University propose to investigate and develop an innovative approach to predict stall events of aircraft engines prior to occurrence and in sufficient time to allow the FADEC controller to adjust engine variables. The team will utilize vector quantization and neural network techniques to develop accurate models of engine behavior that will be used t ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government