You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Particle Flow Physics Modeling for Extreme Environments

    SBC: CFD RESEARCH CORPORATION            Topic: T403

    The liberation of particles induced by rocket plume flow from spacecraft landing on unprepared regolith of the Moon, Mars, and other destinations poses high mission risks for robotic and human exploration activities. This process occurs in a combination of "extreme environments" that combine low gravity, little or no atmosphere, with rocket exhaust gas flow that is supersonic and partially rarefie ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  2. Unified In-Space Propulsion Framework for Prediction of Plume-Induced Spacecraft Environments

    SBC: CFD RESEARCH CORPORATION            Topic: T102

    Chemical contamination of spacecraft components as well as thermal and force loading from firing liquid propellant thrusters are critical concerns for in-space propulsion applications. Gas molecular contamination and liquid droplet deposition due to incomplete combustion threaten to damage surface materials, sensitive instruments and optical sensors, and poses major risks for mission success. Liqu ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  3. Multiphase Modeling of Solid Rocket Motor Internal Environment

    SBC: CFD RESEARCH CORPORATION            Topic: T102

    Solid rocket motor (SRM) design requires thorough understanding of the slag accumulation process in order to: predict thrust continuity, optimize propellant conversion efficiency, predict coning effects from sloshing, and assess potential orbital debris (slag) hazard. Current state-of-the-art models for SRM environment do not have the capability to simulate the accumulation and dynamics of slag in ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  4. Efficient On-board Lamberts Solution for DSM

    SBC: ADVANCED SPACE LLC            Topic: T1102

    Distributed Spacecraft Missions (DSMs) such as constellations, formation-flying missions, and fractionated missions provide unique scientific and programmatic benefits. Distributed mission architectures allow for multipoint in-situ measurements, multi-angle viewpoints, and considerably improved understanding of the connections between separately measured phenomena and their time variations. DSMs a ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  5. Launch Weather Decision Support System

    SBC: Radiometrics Corporation            Topic: T103

    Launch safety and efficiency requires timely and accurate wind, thermodynamic and pressure information from the surface to 20 km height, and lightning risk identification. A Doppler radar now provides wind measurements that satisfy this requirement at the Eastern Test Range. Thermodynamic soundings are provided by intermittent radiosondes on launch day. Typical intervals of an hour or more between ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  6. Sustainable Water Purification

    SBC: STREAMLINE AUTOMATION LLC            Topic: T603

    Newly developed phase-engineered and low dimensional materials have opened the door to the design of materials structures that exhibit extremely efficient ionic transport. Recently, a new type of electro-filtration system designed to convert thermal power into purified water from salt water (or other ionic pollutants) has been demonstrated in the lab. The system is based on a bi-phasic nanoplate ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  7. Uncooled Multispectral Photoemissive Infrared Detector

    SBC: THIRD FLOOR MATERIALS, INC.            Topic: T801

    Using novel materials and device geometries unique to North Carolina State University (NCSU) and Third Floor Materials (3FM) this program will develop a detector technology that enables room-temperature multispectral IR imaging by exploring transduction pathways between infra red light and a measureable electric signal mediated by an epsilon-near-zero (ENZ) mode. The research activity will use a c ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  8. High Performance Multiphase Combustion Tool Using Level Set-Based Primary Atomization Coupled with Flamelet Models

    SBC: STREAMLINE NUMERICS INC            Topic: T101

    The innovative methodologies proposed in this STTR Phase 1 project will enhance Loci-STREAM which is a high performance, high fidelity simulation tool already being used at NASA for a variety of CFD applications. This project will address critical needs in order to enable fast and accurate simulations of liquid space propulsion systems (using propellants such as LOX, LCH4, RP-1, LH2, etc.). The pr ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  9. Bi-Metallic Additive Manufacturing Close-Out of Coolant Channels for Large Liquid Rocket Engine (LRE) Nozzles

    SBC: Keystone Synergistic Enterprises, LLC            Topic: T1204

    This NASA sponsored STTR project will investigate methods for close-out of large, liquid rocket engine nozzle, coolant channels utilizing robotic laser and pulsed-arc additive manufacturing methods. Copper to Nickel alloy interface strength will be quantified and metallurgical characterization completed. A thermal model based on Rosenthal?s analytical expression for a moving heat source, which has ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  10. uG-LilyPond- Floating Plant Pond for Microgravity

    SBC: SPACE LAB TECHNOLOGIES LLC            Topic: T702

    The proposed μG-LilyPond is an autonomous environmentally controlled floating plant cultivation system for use in microgravity. The μG-LilyPond concept expands the types of crops that can be grown on a spacecraft in a flexible, efficient, low maintenance package. The μG-LilyPond features several innovations relative to state of the art, including passive water and nutrient delivery to floating ...

    STTR Phase I 2017 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government