You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Development for Radiation Hardened Advanced Electronic Circuits

    SBC: United Silicon Carbide, Inc.            Topic: MDA09T006

    In response to SBIR topic MDA09-T006, USCI proposes to develop the first medium-level integrated circuit for radiation-tolerant applications. The advanced integrated circuit will be demonstrated based on a novel yet simple design SiC transistor that has the potential to provide a factor of 10X improvement in performance comparison to state-of-the-art. The SiC transistor can be fabricated by a subs ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  2. Propulsion Modeling

    SBC: Metacomp Technologies, Inc.            Topic: MDA09T009

    The occurrence of combustion instability has long been a matter of serious concern in the development of liquid-propellant rocket engines due to the high rate of energy release in a confined volume in which energy losses are relatively small. Positive feedback between the acoustic waves and unsteady combustion could lead to the destruction of an engine in a fraction of a second. The situation is ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  3. Software Defined Multi-Channel Radar Receivers for X-band Radars

    SBC: MAXENTRIC TECHNOLOGIES LLC            Topic: MDA09T003

    The United States Missile Defense Agency (MDA) is searching for a software-defined multi-channel radar receiver that would provide improved performance and added flexibility over currently deployed radar systems. In response, MaXentric is proposing a system codenamed MASR (Manycore Adaptive Software Radar). The MASR system is composed of a hierarchy of X-band front-ends, high-speed digitizers, F ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  4. Low Cost, High Performance Transmit/Receive Integrated Circuits on a single chip

    SBC: ANOKIWAVE INC            Topic: MDA09T004

    The objective of this Phase I proposal is to demonstrate, through a rigorous design and modeling, the feasibility of a single chip Transmit/Receive Integrated Circuits (TRIC) with on-chip controller and compensation networks for next generation X-band radar systems. TRIC will include RF, analog and digital circuits on a single chip. TRIC functionality would include Frequency-modulated Continuous ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  5. Multi Junction Solar cells for Satellite

    SBC: CFD RESEARCH CORPORATION            Topic: MDA09T005

    Higher efficiency solar cells are needed to reduce mass, volume, and cost of DoD space missions. However, to achieve higher efficiency and radiation hardness of the best to date multi-junction photovoltaic (PV) devices, several challenges must be addressed. This project aims to develop: 1) Quantum Well (QW)-based multi-junction cell that exhibits enhanced efficiency, and 2) Radiation-hardened PV c ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  6. Improving Software and Data Security in SCADA Systems

    SBC: REAL-TIME INNOVATIONS, INC.            Topic: OSD09T003

    To build a more intelligent grid, electric utilities must now construct a new architecture from connected, standard technologies. This smart architecture will connect SCADA systems so they can interact more efficiently. It will employ distributed monitoring and power-use optimization. It will also connect SCADA networks to corporate networks, wireless systems, and remote monitoring stations. ...

    STTR Phase I 2010 Department of Defense
  7. Plasmonic Logic Devices

    SBC: Luna Innovations Incorporated            Topic: AF08BT18

    Digital electronics is approaching its limits in meeting the demand for increased processing speeds. Photonics, while promising high processing speed, is lacking integration capacity. Plasmonics promises to combine the information capacity of photonics with the integration density of electronics. The team of Luna Innovations, UCLA and Virginia Tech proposes to develop plasmonic logic devices and c ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. Plasmonics for Solar Energy Generation

    SBC: Microxact, Inc.            Topic: AF09BT39

    Photovoltaics, while promising clean and reliable energy source, is not yet compatible with fossil energy for most applications. Organic-based solar cells have potential to reduce the cost of solar energy due to low-cost active materials, high-throughput reel-to-reel deposition technologies, low-temperature processing and application versatility. Currently organic photovoltaics (OPV) cannot commer ...

    STTR Phase I 2010 Department of DefenseAir Force
  9. Eye-safe Optically-Pumped Gas-filled Fiber Lasers

    SBC: Precision Photonics Corporation            Topic: A08T021

    An eye-safe optically pumped laser based on a gas-filled hollow optical fiber will be demonstrated to lase at both near infrared (IR) and mid IR wavelengths. These lasers will be the first in a new class of IR lasers, based on the combination of hollow-f

    STTR Phase II 2010 Department of DefenseArmy
  10. Advanced High Power Solid-State Burst Generator

    SBC: NESS ENGINEERING, INC.            Topic: AF09BT14

    Recent advances in dielectric and magnetic materials have spurred renewed interest in the field of solid state pulse and RF burst generation using Non-Linear Transmission Lines (NLTL) . The NLTL approach to HPM and UWB generation eliminates the need for an electron beam, vacuum system and magnets required in conventional HPM sources. Furthermore, the novel waveforms of NLTL generated pulses promi ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government