You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. STTR Phase I: Advanced Uncooled Infrared Detectors at the Nano-Scale

    SBC: KYTARO, INC.            Topic: MM

    This Small Business Technology Transfer Phase I project aims to develop highly sensitive and inexpensive uncooled microbolometers using ultra-thin films of metals, metal oxides, or semi-metals. These microbolometers will be attractive for use in portable night vision devices and other thermal imaging applications that require a Noise Equivalent Temperature Difference (NETD) of less than 20 mK. We ...

    STTR Phase I 2010 National Science Foundation
  2. STTR Phase I:Novel Nanostructured Substrates for Surface Enhanced Raman Spectroscopy (SERS)

    SBC: LXD            Topic: MM

    This Small Business Technology Transfer Phase I project will develop a new type of nanostructured substrate for applications in arsenide detection using surface enhanced Raman spectroscopy (SERS). Arsenic is a well known toxic chemical which exists in both nature and industrial processes, and its detection and monitoring at very low concentration is highly desired. SERS, which relies on Raman sig ...

    STTR Phase I 2010 National Science Foundation
  3. High throughput aligned nanofiber multiwell plates for glioblastoma research

    SBC: NANOFIBER SOLUTIONS, LLC            Topic: BMS

    This Small Business Innovation Research (SBIR) Phase I project seeks to address the unmet need for high-throughput, cost-effective research tools to model the metastasis of cancer cells. The proposed research objectives are to (1) discover cost-effective, commercially scalable methods allowing the production of aligned nanofibers in a 96-well plate format and (2) verify that the fiber alignment is ...

    STTR Phase I 2010 National Science Foundation
  4. STTR Phase I:Structural properties of carbon nanotube polymer composites

    SBC: BOULDER NONLINEAR SYSTEMS, INC.            Topic: MM

    This Small Business Technology Transfer Phase I project will develop a new system for fabrication and manipulation of carbon nanotube (CNT) composites. The system will use holographic optical trapping (HOT) with a spatial light modulator (SLM) and a new form of nano-controlled photo-polymerization. This tool will allow the creation of a new class of carbon-nanotube polymer composite materials wit ...

    STTR Phase I 2010 National Science Foundation
  5. Efficient plasma synthesis of high-quality graphene

    SBC: APS LLC            Topic: NM

    This Small Business Technology Transfer (STTR) Phase I project aims to develop a highly-efficient and cost-effective plasma-based method for graphene mass production. The approach is to utilize unique properties of magnetically controlled arc discharge to couple the plasma production of carbon species and the synthesis of graphene. The broader/commercial impact of this project will be the potenti ...

    STTR Phase I 2010 National Science Foundation
  6. STTR Phase I: Low-cost naostructured anti-reflection coatings for solar energy applications

    SBC: CSD Nano            Topic: MM

    This Small Business Technology Transfer (STTR) Phase I project aims to fabricate anti-reflective coatings (ARC) for solar energy applications. The approach is to use a convective and evaporation-induced assembly to deposit organized nanostructures and create sub-wavelength quasi repeating structures at lower cost than the repeating structures from photolithography. In this project, a Microreacto ...

    STTR Phase I 2010 National Science Foundation
  7. STTR Phase I: Up-Cycling: Waste Acid for Green Products

    SBC: Clear Carbon Innovations            Topic: MM

    This STTR Phase I project will develop a process to produce silica products from the waste stream of a patent pending activated carbon manufacturing process (carbonxt process). The project focuses on using the silica for Silica-Titania Composites but would also take into account markets that employ precipitated or gel silica which would have differing properties than the silica used in Silica-Tit ...

    STTR Phase I 2010 National Science Foundation
  8. Algorithms for Look-down Infrared Target Exploitation

    SBC: SIGNATURE RESEARCH, INC.            Topic: 1

    Signature Research, Inc. (SGR) and Michigan Technological University (MTU) propose a Phase I STTR effort to develop a learning algorithm which exploits the spatio-spectral characteristics inherent within IR imagery and motion imagery.Our archive of modelled and labeled data sets will allow our team to thoroughly capture the variable elements that will drive machine learning performance.The overall ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  9. Additive Manufacturing Sensor Fusion Technologies for Process Monitoring and Control.

    SBC: ARCTOS Technology Solutions, LLC            Topic: DLA18A001

    Universal Technology Corporation (UTC) has teamed with the University of Dayton Research Institute (UDRI), Stratonics, and Macy Consulting to demonstrate not only the transitionability into commercial systems, but also to develop the data analytics and monitoring and control requirements to extract the full value fromseveral sensors, including the Stratonics ThermaViz, acoustic and profilometry se ...

    STTR Phase I 2018 Department of DefenseDefense Logistics Agency
  10. Additive Manufacturing Sensor Fusion Technologies for Process Monitoring and Control.

    SBC: SENVOL LLC            Topic: DLA18A001

    The Department of Defense (DoD) has a demand for out-of-production parts to maintain mission readiness of various weapons platforms. Additive manufacturing (AM) is an exciting and promising manufacturing technique that can make out-of-production parts and holds the potential to solve supply chain issues, such as high costs (i.e. for low-volume parts) and sole sourcing risks. The ability of AM to s ...

    STTR Phase I 2018 Department of DefenseDefense Logistics Agency
US Flag An Official Website of the United States Government