You are here
Award Data
The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.
Download all SBIR.gov award data either with award abstracts (290MB)
or without award abstracts (65MB).
A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.
The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.
-
Software Defined Multi-Channel Radar Receivers for X-band Radars
SBC: DGNSS Solutions, LLC Topic: MDA09T003The primary objective of the proposed research is to develop proof of concept of a software programmable X-Band radar system using low cost antenna array technology with digital beamforming architecture based on multiple receiver channels. The performance objectives will aim at a minimum of 400 MHz instantaneous bandwidth and a minimum instantaneous dynamic range of 52 dB. The objective of the t ...
STTR Phase I 2010 Department of DefenseMissile Defense Agency -
Development of a Computational Method for Prediction of After-Burning Effect
SBC: BUSA Engineering Consulting Topic: N10AT002This proposal is being submitted in response to the solicitation topic N10A-T002 (Development of a Computational Method for Prediction of After Burning Effect) by BUSA Engineering Consulting (Dr. Jianghui Chao) in collaboration with University of Florida (PI: Prof. S. Balachandar). The overall objective of the proposed effort is to contribute to national defense and security by advancing the state ...
STTR Phase I 2010 Department of DefenseNavy -
Instrumentation for Nanoscale Spectroscopy
SBC: R H K Technology, Inc. Topic: AF08BT30This STTR will provide a prototype Electronics Package that integrates disparate streams of spectrographic and topographic data to provide high resolution imaging and chemical specificity at the nanoscale. It will enable development of a commercial instrument delivering routine near-field tip-enhanced optical imaging with spatial resolutions in the range of 10-50nm along with topographic (Atomic F ...
STTR Phase I 2010 Department of DefenseAir Force -
Development of Strategic Organic Energy Storage Capacitor Devices
SBC: Wolverine Energy Solutions and Technology Topic: AF09BT05High energy density and high power capacitors operating at a high frequency are in great demand for a variety of residential, military, medical, and industrial applications. In fact, a large percentage of the cost of alternative energy components is consumed by the cost of capacitors. Although there have been some developments in the fabrication of inorganic super-capacitors, the problems encoun ...
STTR Phase I 2010 Department of DefenseAir Force -
Multi-scale Physics-Based Models for alpha-betaTitanium Alloys Accounting for Higher-Order Microstructure Statistics.
SBC: MRL MATERIALS RESOURCES LLC Topic: AF09BT29Modern military and civilian aircraft technologies are pushing the performance envelope through design and use of new advanced materials with superior property combinations. Aircraft powerplant manufacturers are facing intense competition to efficiently deliver ever increasing thrust, while meeting the highest standards of reliability and performance over an expanded service life. These performanc ...
STTR Phase I 2010 Department of DefenseAir Force -
Theoretical Innovations in Combustion Stability Research: Integrated Analysis and Computation
SBC: Kassoy Innovative Science Solutions Topic: AF09BT38Quantitative predictions of reactive flow dynamics from large-scale simulations of Liquid Rocket Engines (LRE) appear to be model dependent. Relationships and coupling among the dominant mechanisms most responsible for destabilization are obscured by the complexities of the model and subtle consequences of inherent ad hoc approximations not supported by mathematical rationale. The reliability of ...
STTR Phase I 2010 Department of DefenseAir Force -
Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)
SBC: Northwest Uld, Inc. Topic: N10AT001Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...
STTR Phase I 2010 Department of DefenseNavy -
Metal-blacks for plasmonic enhancement of solar-cell efficiency
SBC: Physical Engineering Corporation Topic: AF09BT39This Phase I STTR proposal will demonstrate nanostructured “metal-black” coatings to enhance absorption by thin film solar cells. The problem is that silicon has low absorption due to its indirect gap. The opportunity is that nano-scale metallic scattering centers increase the effective optical path length and enhance the solar electric-field strength in thin-film solar cells, leading to more ...
STTR Phase I 2010 Department of DefenseAir Force -
Modeling Leadership Dynamics in Multinational Environments
SBC: MacroCognition, LLC Topic: ST092002We propose to develop a computational model of leadership designed to capture complex variables including cultural differences in leadership requirements along with task differences, primarily ill-defined goals, which pose leadership challenges. Rather than avoiding these kinds of complexity and developing a computational model that is unlikely to scale up, we believe there is more to be gained b ...
STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency -
On-Chip Passive Phase-Locking for High Coherent Power, Mid-IR Quantum Cascade Lasers
SBC: INTRABAND, LLC Topic: A10AT007The technical objectives of this proposal are: 1) the design of 8 micron-emitting active-photonic-crystal (APC) quantum-cascade (QC) lasers by using passive phase-locking in a monolithic structure in order to achieve multiwatt-range, diffraction-limited powers; and 2) the development of the key fabrication steps for realizing the proposed APC QC laser. Deep-well (DW) QC lasers will be used in the ...
STTR Phase I 2010 Department of DefenseArmy