You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Ultra-Coherent Semiconductor Laser Technology

    SBC: TELARIS INC            Topic: A14AT005

    Spontaneous emission is a quantum mechanical process that represents the main source of phase noise in state-of-the-art semiconductor lasers, limiting their coherence, and their suitability for high-speed communication and sensing applications. This proposal aims to develop ultra-high coherence semiconductor lasers on the Silicon/III-V platform with a quantum linewidth of

    STTR Phase I 2014 Department of DefenseArmy
  2. Ultra compact, efficient, and reliable GaN based deep UV laser for Raman spectroscopy

    SBC: AGILTRON, INC.            Topic: A11aT005

    Leveraging Agiltron"s industrial leading developments and production of Raman instruments, external cavity laser and nonlinear optical components, we propose to develop a new class of high performance compact deep ultraviolet (UV) laser for Raman spectroscopy. The approach is closely coupled with recent progress in GaN blue laser and external resonator enhanced second harmonic generation (SHG) to ...

    STTR Phase I 2011 Department of DefenseArmy
  3. Ultra Fine Grain Steel Alloys by Severe Plastic Deformation

    SBC: TRANSITION45 TECHNOLOGIES INC            Topic: A10AT001

    This STTR program proposes to exploit the tremendous benefits that could be offered by the development of ultra fine grain steel alloys for application to the production of high performance components for military rotorcraft applications. A severe plastic deformation technology based on isothermal forging technologies will be explored here. The goal is to demonstrate a practical, production leve ...

    STTR Phase I 2010 Department of DefenseArmy
  4. Ultrasound Assisted Oxidative Desulfurization of JP-8 Fuel

    SBC: AERODYNE RESEARCH INC            Topic: A07T017

    The Army has identified solid oxide fuel cell (SOFC) power systems as a potential solution to a variety of power needs ranging from roughly 0.1 - 100 kW. Reformed JP-8, the Army logistics fuel, can be used as the feed, but the fuel sulfur content must first be reduced to 10 ppm. We plan to test a novel ultrasonic slurry reactor as part of a compact desulfurization process for treatment of sulfur ...

    STTR Phase I 2007 Department of DefenseArmy
  5. Ultraviolet Acousto-Optic Devices Using Barium Borate (BBO)

    SBC: BRIMROSE TECHNOLOGY CORP            Topic: A10AT008

    We will develop novel acousto-optic devices for use in the UV using the new material Barium Borate (BBO) which not only has the required UV transparency, but a unique combination of acoustic and optical properties. The capabilities provided by these new UV AO devices are ideally suited for optical addressing arrays of trapped ions with focused spots from appropriately tuned UV and visible lasers t ...

    STTR Phase I 2010 Department of DefenseArmy
  6. Ultraviolet/Infrared Detectors for Active Protection

    SBC: MOSET CORP.            Topic: N/A

    The ARMY needs active protection using a UV and IR dual band focal plane array (FPA) to detect and track hostile fire so that targets can respond and avoid incoming rounds. The objectives of this effort are to determine the requirements of an uncooledUV/IR FPA for active protection and demonstrate feasibility of integrating UV and IR detector arrays with the readout integrated circuit (ROIC). In ...

    STTR Phase I 2001 Department of DefenseArmy
  7. Universal textile functionalization chemistry for molecular and particulate attachment based on a novel activation treatment

    SBC: Nano Terra, Inc.            Topic: A18BT024

    Nano Terra and the El-Shafei group (North Carolina State University) propose to demonstrate, optimize and expand a universal platform for textile functionalization. The approach is one developed in the El-Shafei group that has already been explored for its utility in cotton, nylon-cotton blends and polypropylene. The functionalization method imparts a high-level of flame retardancy (without haloge ...

    STTR Phase I 2019 Department of DefenseArmy
  8. Using Evolving Curves to Track Dynamic Boundaries

    SBC: Intelligent Automation, Inc.            Topic: N/A

    The key innovation proposed in this STTR effort by Intelligent Automation, Inc. and Duke University is a hybrid level set based algorithm to achieve dynamic perimeter surveillance within a region by constructing an evolving function based on the perceiveddensity of a phenomenon. Drawing on state-of-the-art image processing methodologies, the hybrid solution offers the flexibilities of an Eulerian ...

    STTR Phase I 2003 Department of DefenseArmy
  9. Using Evolving Curves to Track Dynamic Boundaries

    SBC: Intelligent Automation, Inc.            Topic: N/A

    In the phase I effort, IAI successfully demonstrated the feasibility of co-operative swarm based approach to boundary tracking. This approach is relevant to applications such as tracking oil spills using a swarm of robots, tracking enemy troop movement using a swarm of UAV's (Future Combat System (FCS) type scenario), and tracking of static and moving mine fields . In Phase II, we continue our ef ...

    STTR Phase I 2004 Department of DefenseArmy
  10. Using the Conditional Moment Closure Method to Assess the Effects of Turbulence Chemical Kinetics

    SBC: REACTION SYSTEMS, INC.            Topic: A16AT001

    The ability to accurately design and predict the performance of combustion-based machinery like gas turbine engines is important in improving their performance, increasing their fuel economy, lowering operating costs, and decreasing pollutant emissions. Almost all of the flows are turbulent in industrial combustion applications, therefore understanding the interaction between turbulence and combu ...

    STTR Phase I 2016 Department of DefenseArmy
US Flag An Official Website of the United States Government