You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Reliable, Safe, Lithium-ion Battery Enabled by a Robust Battery Management System

    SBC: Space Information Laboratories, LLC            Topic: N15AT001

    An advanced Li-Ion Battery Management System for DOD mission and safety critical platforms. The majority of Li-Ion Battery Management Systems (BMS) for DoD aircraft, helicopter, and directed energy weapons are custom designs for the individual Aerospace platform. This leads to increased cost over the battery life cycle due to the requirement to maintain the production facilities which produce repl ...

    STTR Phase II 2017 Department of DefenseNavy
  2. Aircraft Carrier-based Precision Ship-Relative Navigation Guidance for Aircraft Landing under Emissions Control Conditions

    SBC: SA Photonics, Inc.            Topic: N15AT014

    SA Photonics has developed a concept for our Multiple Optical Beam Landing System (MOBLS) to provide autonomous landing of aircraft in RF denied environments. MOBLS utilizes multiple, redundant methods to determine the real-time location and bearing of the aircraft relative to the carrier-based landing strip. By having built in redundant modalities, MOBLS provides highly reliable landing informati ...

    STTR Phase II 2017 Department of DefenseNavy
  3. Tunable Active HEterodyne Terahertz Imager (TAHETI)

    SBC: LONGWAVE PHOTONICS LLC            Topic: A17AT007

    LongWave Photonics, Massachusetts Institute of Technology and Virginia Diodes are proposing the use of the Terahertz Quantum-Cascade Lasers (QCL) combined with a Schottky diode detector for high dynamic range heterodyne imaging. Two single-mode, distributed feedback (DFB) QCLs with milliwatt power levels will be used as local oscillator and illumination for imaging. The QCLs will be downconverte ...

    STTR Phase I 2017 Department of DefenseArmy
  4. Spatiotemporal Shaping for Parallel Additive Manufacturing

    SBC: POLARONYX INC            Topic: N17AT030

    This Navy STTR Phase I proposal presents an parallel AM tool to eliminate conventional scanning strategy. A 2D MEMS array is used to shape both in time domain and spatial domain to obtain the desired pattern for layer by layer process. Modeling is used to study in-process melting evolution versus powder and beam properties. It provides quantitative characterization of the AM system to guide the de ...

    STTR Phase I 2017 Department of DefenseNavy
  5. Innovative Physics-based Modeling Tool for Application to pRFID System on Rotorcraft

    SBC: MATHEMATICAL SYSTEMS & SOLUTIONS INC            Topic: N15AT005

    We propose development of a software capability which, based on use of accurate and efficient exact-physics computational electromagnetics (CEM) solvers together with CAD-import (Computer Aided Design) and direct CAD-to-EM capabilities, will enable optimization of the properties of on-platform pRFID tag/reader antenna systems. For accuracy and modeling flexibility the proposed codes are based on M ...

    STTR Phase II 2017 Department of DefenseNavy
  6. Flexible Broad-band Optical Device

    SBC: OCEANIT LABORATORIES INC            Topic: AF17AT010

    Oceanit proposes to develop a flexible broad-band optical device capable of measuring optical properties.

    STTR Phase I 2017 Department of DefenseAir Force
  7. Highly-mobile Autonomous Rapidly Relocatable Integrated Electro-optical Resources (HARRIER)

    SBC: Exoanalytic Solutions, Inc.            Topic: AF16AT05

    ExoAnalytic Solutions, teamed with Texas A&M University and Georgia Institute of Technology, will develop Highly-mobile Autonomous Rapidly Relocatable Integrated Electro-optical Resources (HARRIER) with the goal being to design and demonstrate tracking of resident space objects (RSOs) in near-geosynchronous orbit (GEO) using a rapidly-constructed low-cost ground based electro-optic (EO) sensor wit ...

    STTR Phase II 2017 Department of DefenseAir Force
  8. Deep Learning with Whole-Scene Contextual Reasoning for Target Characterization

    SBC: Exoanalytic Solutions, Inc.            Topic: MDA15T001

    ExoAnalytic Solutions is developing DEEPR (Deep Learning with Whole-Scene Contextual Reasoning for Object Characterization), an advanced multi-sensor multi-object classifier for integrated object characterization. The overall objective of DEEPR is to develop a suite of advanced, novel techniques that combine innovative advances in deep, hierarchical machine learning together with recurrent Deep L ...

    STTR Phase II 2017 Department of DefenseMissile Defense Agency
  9. Integrated Fiber-Optic Sensor Reliability Modeling and Analysis Tools for Thermal and Power Management Systems for Gas Turbine Engines

    SBC: INTELLIGENT FIBER OPTIC SYSTEMS CORP            Topic: AF16AT16

    Addressing a key technology gap in deployment of fiber-optic sensor networks, IFOS and multidisciplinary collaborators are developing an integrated fiber-optic component reliability modeling software toolkit. The RelOptics toolkits analytical engine is based upon predictive failure models developed for the first time in aerospace industry via rigorous environmental testing of optical fiber splices ...

    STTR Phase II 2017 Department of DefenseAir Force
  10. Intelligent and Multiplexable Ultra-High Temperature Fiber Optic Pressure Sensors for Robust Distributed Engine Control

    SBC: INTELLIGENT FIBER OPTIC SYSTEMS CORP            Topic: AF16AT18

    Engines will be getting smaller and hotter for efficiency reasons, requiring novel sensors with extended and enhanced performance. Emerging fiber-optic sensing approaches could provide a unique solution to the widening technology gap between next-gen engine requirements and conventional sensors limited capabilities. The overall objective of this program is to develop techniques to integrate new pr ...

    STTR Phase II 2017 Department of DefenseAir Force
US Flag An Official Website of the United States Government