You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Prediction of Rotor Loads from Fuselage Sensors for Improved Structural Modeling and Fatigue Life Calculation

    SBC: ATA ENGINEERING, INC.            Topic: N17AT009

    ATA Engineering and researchers at the Georgia Institute of Technology will develop a framework for the accurate reconstruction of rotor loads from a suite of fixed-frame fuselage sensors that are utilized to augment physics-based simulations. The loads reconstruction framework will consist of two modules: the physics module, which provides first-principles predictions from simulations, and the se ...

    STTR Phase I 2017 Department of DefenseNavy
  2. In-Mask Sensors for Physiological Investigation of Respiratory Exhalation- INSPIRE

    SBC: MAKEL ENGINEERING, INC.            Topic: DHP16C002

    Makel Engineering, Inc. and Sandia National Laboratories propose to demonstrate an advanced multi-modal sensor system suitable for in-situ analysis of exhaled VOCs for pilots, divers and field patients. Our proposed system will combine a micro-gas chromatograph (GC) and miniature ion mobility spectrometer (IMS) for detection of trace amounts of exhaled breath VOCs with miniature solid state sensor ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  3. Mask integrated Volatile Organic Compound (VOC) sensor for real-time warfighter physiological status monitoring in extreme and toxic environments

    SBC: BAYSPEC, INC.            Topic: DHP16C002

    BaySpec Inc., in collaboration with Pacific Northwest National Laboratory, proposes to develop an innovative orthogonal sensor systemthat would be able to detect, identify and quantify the inorganic components of breathing mixes, (i.e., nitrogen, oxygen, carbon dioxide, argon, helium, and water vapor), as well as individual detectable VOCs within the exhaled breath in real-time. The Phase I resear ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  4. Multimodal imaging system for burn injury assessment

    SBC: UTOPIACOMPRESSION,CORPORATION            Topic: DHP16C005

    The goal of this STTR effort is to design a portable, multimodal, non-contact imaging system for burn depth diagnosis and tracking of wound healing. UC and Vanderbilt University will build upon our previous efforts demonstrated via porcine model studies to combine results from structural B-mode optical coherence tomography (OCT) images and functional data (pulse speckle imaging- PSI) to classify d ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  5. Visual Tools and Progressive Automation for Complex Knowledge Management and Decision Support

    SBC: STOTTLER HENKE ASSOCIATES, INC            Topic: N17AT004

    We propose to adapt and automate the processes and technologies associated with evidence based decision support to the Navyproviding a tool that can synthesize current cognitive and learning science knowledge and inform decisions so as to maximize the value gained for each training expenditure. We will develop a plug-play architecture that will allow us to make the best use of emerging technologie ...

    STTR Phase I 2017 Department of DefenseNavy
  6. Auto-Docking Autonomous Burial Vehicle (AD-ABV)

    SBC: MAKAI OCEAN ENGINEERING INC            Topic: N11AT017

    Subsequent Phase II Proposal, extension of Phase II contract N00039-12-C-0082. This contract involves the development of an underwater vehicle that can reliably and autonomously interconnect power and data cables to undersea nodes after they have been deployed. The Auto-Docking Autonomous Burial Vehicle (AD-ABV) is a cable-connecting adaptation of Makai’s proven ABV, which has been successfully ...

    STTR Phase II 2017 Department of DefenseNavy
  7. Nonintrusive Detector of Acute Cognitive Strain (DACS)

    SBC: QUANTUM APPLIED SCIENCE & RESEARCH INC            Topic: ST16C003

    Modern defense systems place high cognitive demands on warfighters, often taxing the limit of human capabilities and causing operators to suffer Acute Cognitive Strain (ACS), wherein performance deteriorates markedly, leading to a loss of situational awareness and control, and decrements in team cooperativity. ACS leads to physiological changes driven by sympathetic system activation, including i ...

    STTR Phase I 2017 Department of DefenseDefense Advanced Research Projects Agency
  8. Optimizing Human-Automation Team Workload through a Non-Invasive Detection System

    SBC: Cognionics, Inc.            Topic: ST16C003

    This STTR project aims to assess the feasibility of using laryngeal EMG to detect operator workload and strain. Phase I will develop a wearable neckband device positioning an array of laryngeal EMG electrodes plus additional sensors for measuring masseter EMG, heart rate variability, GSR and estimated relative blood pressure. The neckband will be optimized to be both wearable, comfortable and resi ...

    STTR Phase I 2017 Department of DefenseDefense Advanced Research Projects Agency
  9. Methodologies for Cost-Effective Measurement of Dynamic Material Properties or Characterization of Materials under Dynamic Loads

    SBC: KARAGOZIAN & CASE, INC.            Topic: MDA16T003

    Karagozian & Case, Inc. (K&C) and the Georgia Institute of Technology (Georgia Tech) will develop a re-usable, cost-effective, and accurate dynamic characterization methodology capable of measuring the dynamic material properties of various materials of interest under very high strain rates. Materials property data for various ductile materials (e.g., steel and aluminum) are required as input to f ...

    STTR Phase I 2017 Department of DefenseMissile Defense Agency
  10. Programmable Multi-Frequency Transmitter

    SBC: Space Micro Inc.            Topic: MDA16T005

    Space Micro and partner institution Arizona State University propose to design and prototype a Programmable Multi-Frequency Transmitter (PMFT) that is compliant with both the Kill Vehicle Modular Open Architecture (KVMOA) and Space Telecommunications Radio System (STRS) standards. The KVMOA maximizes reuse of components and system designs and reduce total ownership costs. The STRS standard allows ...

    STTR Phase I 2017 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government