You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Multi-Sensor Autonomous Hydrothemal Vent Detection System

    SBC: 10dBx LLC            Topic: N17AT028

    Development of a concept of operations is proposed for autonomous hydrothermal vent detection in a single sortie. The concept involves active sonars (forward looking and swath mapping sonars, plus possibly a 1-2 MHz acoustic Doppler current profiler (ADCP) for measuring midwater turbulence) mounted on a commercial AUV equipped with environmental sensors (e.g., CTD, fluorometer, MAPR-ORP). The AUV ...

    STTR Phase I 2017 Department of DefenseNavy
  2. Risk-Based Unmanned Air System (UAS) Mission Path Planning Capability

    SBC: ACTA, LLC            Topic: N17BT034

    In this Phase I Project ACTA and its partners will demonstrate the feasibility of developing a risk-based mission path planning (RB MPP) approach. Areas of interest to the Navy where a RB MPP address critical needs include enabling less restrictive UAS operations within the US National and Foreign Airspaces. The Phase I will demonstrate feasibility with a two-step approach. The first step will dem ...

    STTR Phase I 2017 Department of DefenseNavy
  3. Cognitive Risk Management for UAS Missions

    SBC: Stottler Henke Associates, Inc.            Topic: N17BT035

    Enabling operators to command and control multiple UAVs will require higher levels of supervisory control, enabling vehicles to operate autonomously during larger portions of each mission. For the foreseeable future, however, critical portions of each mission will require operators to apply their superior knowledge, judgment, and skills to assess the situation, monitor execution more closely and, ...

    STTR Phase I 2017 Department of DefenseNavy
  4. Body-worn Wireless Physiological Monitoring Network

    SBC: Cognionics, Inc.            Topic: N13AT021

    This STTR Phase II proposal continues our work towards building a simple, high quality and unobtrusive mobile physiological sensor platform. The capabilities of the Phase I prototype will be expanded by adding sensors to further acquire SpO2 and respiration in addition to forming a body area network for data collection across multiple points on a subjects body. A software infrastructure will also ...

    STTR Phase II 2017 Department of DefenseNavy
  5. Pseudospectral Optimal Control for Flight Trajectory Optimization

    SBC: STOCHASTECH CORPORATION            Topic: N15AT006

    This Phase II effort aims to deliver robust, reliable software that instantiates state-of-the-art feedback pseudospectral optimal control algorithms for flight trajectory optimization. The computation and real-time implementation of controls in nonlinear systems remains one of the great challenges for applying optimal control theory in demanding aerospace and industrial systems. From proportional ...

    STTR Phase II 2017 Department of DefenseNavy
  6. Pseudospectral Optimal Control for Flight Trajectory Optimization

    SBC: Systems Technology, Inc.            Topic: N15AT006

    The pseudospectral optimal control (PSOC) problem is used for rapid trajectory optimization and provides the ability to re-optimize during flight. This technology was implemented on a Navy-relevant mission, and pseudo-real-time operation was demonstrated. The technical readiness level at the end of the Phase I program is a concept that has been shown to be feasible using analysis and simulation. T ...

    STTR Phase II 2017 Department of DefenseNavy
  7. Reliable Manufacturing of Scandia-doped Tungsten Powders for Thermionic Cathodes

    SBC: NGIMAT, LLC            Topic: N15AT010

    In this Phase II STTR effort, nGimat will partner with the University of Kentucky (UK) and 3M/Ceradyne to continue development of W-scandate cathode composite materials. Compared to conventional M-type cathodes, these composite scandate nanomaterials will enable longer cathode lifetime by lowering the required operating temperature. nGimat is an established and successful powder manufacturing comp ...

    STTR Phase II 2017 Department of DefenseNavy
  8. Nanocomposite Scandate Tungsten Powder for High Current Density and Long Life Thermionic Cathodes

    SBC: Vacuum Process Engineering, Inc.            Topic: N15AT010

    Vacuum Process Engineering, Inc. (VPE), in collaboration with the University of California, Davis (UC Davis), proposes to develop and quantitatively verify a large scale production process for scandate tungsten nanocomposite powder to be used in high current density and long life cathodes during the Phase II effort. The plan for implementation of the large scale production process at VPE with powd ...

    STTR Phase II 2017 Department of DefenseNavy
  9. Three-Dimensional Density Imaging by Rayleigh Scattering

    SBC: Metrolaser, Inc.            Topic: AF16AT06

    A diagnostic is proposed for obtaining instantaneous three-dimensional volumetric distributions of density in a flow field at velocities ranging from subsonic to supersonic. Two variants of laser-based Rayleigh scattering will be investigated, each of wh...

    STTR Phase I 2016 Department of DefenseAir Force
  10. CyberSTEPS- Cyber Skills Training with Electronic Performance Support

    SBC: Tier 1 Performance Solutions, LLC            Topic: AF16AT08

    There are many challenges in creating Air Force systems that are resilient against cyber threats. The cyber environment and its threats are highly dynamic, requiring practices and training to be dynamic as well. Cyber threats must be considered during th...

    STTR Phase I 2016 Department of DefenseAir Force
US Flag An Official Website of the United States Government