You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Miniature Mass Spectrometer for Peptide Sequencing and Mobile Coupling with Separation Techniques

    SBC: BAYSPEC, INC.            Topic: A16AT012

    Using advanced ion optics that was developed by Pacific Northwest National Laboratory (PNNL), BaySpec will develop a prototype of portable mass spectrometer (less than 40 lb. and 300W) with continuous atmospheric pressure inlet that is fully capable of uninterrupted on-line sampling from an ambient environment. The continuous nature of the inlet ensures full compatibility with separation technique ...

    STTR Phase I 2016 Department of DefenseArmy
  2. Methodologies for Cost-Effective Measurement of Dynamic Material Properties or Characterization of Materials under Dynamic Loads

    SBC: KARAGOZIAN & CASE, INC.            Topic: MDA16T003

    Karagozian & Case, Inc. (K&C) and the Georgia Institute of Technology (Georgia Tech) will develop a re-usable, cost-effective, and accurate dynamic characterization methodology capable of measuring the dynamic material properties of various materials of interest under very high strain rates. Materials property data for various ductile materials (e.g., steel and aluminum) are required as input to f ...

    STTR Phase I 2017 Department of DefenseMissile Defense Agency
  3. Method for Locally Measuring Strength of a Polymer-Inorganic Interface During Cure and Aging

    SBC: SURFORCE, LLC            Topic: A17AT016

    Achieving strong and durable polymer adhesion to inorganic substrates under various environmental conditions is challenging. The required long-term durability tests are over long time- and length-scales, beyond the capability of current modeling, and extensive experimental testing is needed. Currently, no commercially available method exists for monitoring how a polymer/substrate system evolves du ...

    STTR Phase I 2017 Department of DefenseArmy
  4. Mask integrated Volatile Organic Compound (VOC) sensor for real-time warfighter physiological status monitoring in extreme and toxic environments

    SBC: BAYSPEC, INC.            Topic: DHP16C002

    BaySpec Inc., in collaboration with Pacific Northwest National Laboratory, proposes to develop an innovative orthogonal sensor systemthat would be able to detect, identify and quantify the inorganic components of breathing mixes, (i.e., nitrogen, oxygen, carbon dioxide, argon, helium, and water vapor), as well as individual detectable VOCs within the exhaled breath in real-time. The Phase I resear ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  5. Lightweight, Stable Optical Bench with Integrated Vibration Attenuation

    SBC: SAN DIEGO COMPOSITES, INC.            Topic: MDA13T007

    The goal of this program is to design a lightweight optical bench capable of remaining stable under temperature and moisture changes, while isolating the precision optical array from vibrations such as engine noise and air turbulence. By integrating a customizable periodic stack in the bench, vibrations are attenuated more effectively than commercially available mounts. Additionally, the periodic ...

    STTR Phase II 2016 Department of DefenseMissile Defense Agency
  6. Laser and Rapid-thermal Crystalization of GeSn and SiGeSn layers for IR detectors and Si-based OE devices

    SBC: FREEDOM PHOTONICS LLC            Topic: AF16AT28

    Advanced infrared imaging techniques are of great interest but associated high costs of III-V and II-VI SWIR and MWIR materials prohibit their widespread deployment and integration with other optoelectronic devices. Freedom Photonics and its team partner...

    STTR Phase I 2016 Department of DefenseAir Force
  7. Large-scale Entity Linking and Disambiguation with DeepDive

    SBC: CLEARCUT ANALYTICS, INC            Topic: N16AT016

    DeepDive is a system for extracting relational databases from dark data: the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data --- scientific papers, Web classified ads, customer service notes, and so on --- were instead in a relational database, it would give analysts access to a massiv ...

    STTR Phase I 2016 Department of DefenseNavy
  8. Interactive Sensor Fusion for Context-Aware Discrimination

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: MDA15T001

    We propose a novel computational framework for discrimination that incorporates sensor data from observations of the engagement and from kill assessment (KA) that such sensors can provide. The KA information is combined with data from other sensors to improve the discrimination decision and to reduce the probability of correlated shots. Approved for Public Release 16-MDA-8620 (1 April 16)

    STTR Phase I 2016 Department of DefenseMissile Defense Agency
  9. Intelligent and Multiplexable Ultra-High-Temperature Fiber-Optic Pressure Sensors for Robust Distributed Engine Control

    SBC: INTELLIGENT FIBER OPTIC SYSTEMS CORP            Topic: AF16AT18

    Next-generation intelligent engines will operate at higher temperatures for increased efficiency and will migrate from centralized to distributed control. There is critical need for sensors for operation at ultra-high temperatures (3000F). Conven...

    STTR Phase I 2016 Department of DefenseAir Force
  10. Intelligent and Multiplexable Ultra-High Temperature Fiber Optic Pressure Sensors for Robust Distributed Engine Control

    SBC: INTELLIGENT FIBER OPTIC SYSTEMS CORP            Topic: AF16AT18

    Engines will be getting smaller and hotter for efficiency reasons, requiring novel sensors with extended and enhanced performance. Emerging fiber-optic sensing approaches could provide a unique solution to the widening technology gap between next-gen engine requirements and conventional sensors limited capabilities. The overall objective of this program is to develop techniques to integrate new pr ...

    STTR Phase II 2017 Department of DefenseAir Force
US Flag An Official Website of the United States Government