You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Quantifying Uncertainty in the Mechanical Performance of Additively Manufactured Parts Due to Material and Process Variation

    SBC: VEXTEC CORPORATION            Topic: N16AT004

    The Phase I objective is a proof of concept capability integrating process information, material properties and damage tolerance simulations into the Additive Manufacturing (AM) design certification process. VEXTEC has a toolbox of software and methods that consists of various software modules in multiple formats that are used to assess the durability of parts processed by traditional methods of c ...

    STTR Phase I 2016 Department of DefenseNavy
  2. Improved Synthesis and Characterization of New Energetic Compounds

    SBC: TDA RESEARCH, INC.            Topic: N16AT021

    The Navy seeks new energetic and oxidizing ingredients for use in propellant and explosive formulations of modern weapons systems. With recent developments in the design and synthesis of new energetic molecules, we have the opportunity to take the steps needed before these materials can successfully transition to use in next generation propulsion and ordnance systems. TDA Research and the Universi ...

    STTR Phase I 2016 Department of DefenseNavy
  3. Additive Manufacturing for Microwave Vacuum Electron Device Cost Reduction

    SBC: RADIABEAM TECHNOLOGIES, LLC            Topic: N16AT010

    The Department of the Navy has a need for the development of an additive manufacturing (AM) process for key vacuum electronic device components to meet on-demand, flexible, and affordable manufacturing requirements. The developed manufacturing method has a potential to reduce cost of vacuum electronics by as much as 70% as well as simplify and hence expedite production process of these devices by ...

    STTR Phase I 2016 Department of DefenseNavy
  4. In Situ Inspection of Additive Manufactured Metallic Parts Using Laser Ultrasonics

    SBC: INTELLIGENT OPTICAL SYSTEMS, INC.            Topic: N15AT008

    Additive manufacturing (AM) is a very promising technique for rapid, low-cost production of aircraft parts directly from a CAD file. AM is especially appealing for complex parts that would be costly or impossible to fabricate by machining or casting. At the current time there are no reliable, cost-effective techniques to qualify the finished parts. Several government studies have noted this gap an ...

    STTR Phase II 2016 Department of DefenseNavy
  5. Improved Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications

    SBC: COMPUTATIONAL SCIENCES LLC            Topic: N15AT002

    Computational Sciences LLC will collaborate with the Rensselaer Polytechnic Institute (RPI) to develop and validate a stand-alone computational module that naturally accounts for the effects of turbulence. Such fluctuations and transitions may be associated with compressible flows and boundary layer interactions. The module will be designed for implementation in to existing legacy codes for use in ...

    STTR Phase I 2015 Department of DefenseNavy
  6. Precision Optical Navigation Guidance System (PRONG)

    SBC: FOMS INC.            Topic: N15AT014

    FOMS Inc. and University of Southern California propose to develop the PRecision Optical Navigation Guidance (PRONG) system to provide continuous, high quality range and bearing data to fixed wing aircraft during landing approach to an aircraft carrier. The PRONG system uses infrared optical communications with advanced modulation and coding to measure range between ship and aircraft with accuracy ...

    STTR Phase I 2015 Department of DefenseNavy
  7. Type System for Naval Essential Tasks

    SBC: Datanova Scientific LLC            Topic: N15AT017

    Knowledge graphs are information networks with a specific topology. The topology is simple enough that we do not need graph grammars to specify the subgraphs that belong to a mission graph. Knowledge graphs can be modeled as terms of an algebraic data type in a type system called Flutes. Flutes was created by Datanova Scientific to rigorously analyze formal approaches to semantic integration. This ...

    STTR Phase I 2015 Department of DefenseNavy
  8. Socio-computational Methods to Detect and Predict Bot Activity in Novel Information Environments

    SBC: Intelligent Automation, Inc.            Topic: N15AT020

    Intelligent Automation, Inc. (IAI) proposes to understand social bots behaviors, extract indicators, develop socio-computational models with predictive capabilities to detect bot activity, and implement them in a mature social media analytics software tool. Our approach will use predictive socio-computational models that exploit context, user, friends, temporal, and network features of social medi ...

    STTR Phase I 2015 Department of DefenseNavy
  9. Coupled Multi-physics Analysis and Design Optimization of nozzles (COMANDO)

    SBC: Intelligent Automation, Inc.            Topic: N14AT005

    The US Navy faces daunting energy challenges that will further increase in severity, given the ever-increasing global demand for energy, diminishing energy supplies and demand for enhanced environmental stewardship. Additionally, noise is an important issue for the Navy due to the adverse effect it has on personnel and communities around naval air bases and training sites. Military combat aircraft ...

    STTR Phase II 2015 Department of DefenseNavy
  10. Demonstration of a Local Carrier-Based Precision Approach and Landing System (LC-PALS)

    SBC: TOYON RESEARCH CORPORATION            Topic: N14AT009

    Toyon Research Corporation, together with the University of California, Santa Barbara (UCSB) propose to demonstrate a GPS-denied Local Carrier-based Precision Approach and Landing System (LC-PALS) that enables 3-D position, navigation and time (PNT) for platforms within range of an aircraft carrier equipped with one or more ADEPT-compliant beacons. Unlike the Global Positioning System (GPS), which ...

    STTR Phase II 2015 Department of DefenseNavy
US Flag An Official Website of the United States Government