You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Electro-Optic Transmissive Scanner

    SBC: ULTIMARA INC            Topic: N17AT001

    The goal of this program is to develop and construct a thin, light weight, low power, large aperture, electro-optic (EO) transmissive scanner that utilizes electro-optically active nanomaterial structures, suitable for UAVs platform. The nano-material beam-steering technology aperture system offers an ultra-thin Size, Weight, and Power (SWAP) to fit on UAV;s airframe and achieve ultrafast and wide ...

    STTR Phase I 2017 Department of DefenseNavy
  2. Adaptive Optics controlled nonlinear propagation of USLP

    SBC: ADVANCED SYSTEMS & TECHNOLOGIES INC            Topic: N17AT024

    Filamentation of ultra-short laser pulse propagation in non-linear media offers significant potentials allowing to address numerous problems in military and commercial sectors. However, practical implementation of this requires an ability to control the USLP at its propagation through inhomogeneous media, like turbulent atmosphere. On the basis of our approach for combating turbulence effects on p ...

    STTR Phase I 2017 Department of DefenseNavy
  3. Integrated learning-based and regularization-based super resolution for extreme MWIR image enhancement

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: N17AT016

    OKSI and Northwestern University propose to develop a super-resolution (SR) methodology for mid-wave infrared (MWIR) imagery that produces extreme enhancement of low resolution images. Image enhancement of at least 4x is expected using a standard imaging system. OKSI and Northwestern University will also develop a detector-limited imaging system specifically designed to be used with the SR methodo ...

    STTR Phase I 2017 Department of DefenseNavy
  4. Cognitive Adaptation and Mission Optimization (CAMO) for Autonomous Teams of UAS Platforms

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: N17BT035

    OKSI and Professor Matthew Taylor will develop the Cognitive Adaptation and Mission Optimization (CAMO) command and control tool for teams of UAS platforms. CAMO will incorporate existing databases (e.g., NASA population maps, FAA airspace maps, etc.) as well as real-time data from UAS into a learning-based cognitive control solution that maximizes mission performance while minimizing risk for a t ...

    STTR Phase I 2017 Department of DefenseNavy
  5. Integrated learning-based and regularization-based super resolution for extreme MWIR image enhancement

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: N17AT016

    OKSI and Northwestern University propose to develop a single-image super-resolution (SR) methodology for mid-wave infrared (MWIR) imagery that combines learning-based and regularization-based approaches to produce extreme enhancement of low-resolution images. We will also develop a detector-limited imaging system specifically designed to be used with the SR methodology for which even higher levels ...

    STTR Phase II 2019 Department of DefenseNavy
  6. Cognitive Adaptation and Mission Optimization (CAMO) for Autonomous Teams of UAS Platforms

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: N17BT035

    The Navy needs cognitive control capabilities that enable an autonomous robotic team comprised of a ground control station node and a team of UAS platforms to operate independently (or with minimal human oversight) while carrying out complex missions. A cognitive control capability needs to be developed that concurrently optimizes the balance of mission risk / performance with respect to the Navyâ ...

    STTR Phase II 2019 Department of DefenseNavy
  7. Integrated photonic Raman sensor on a chip

    SBC: PARTOW TECHNOLOGIES LLC            Topic: N19AT023

    A photonic integrated spectrometer based on high-index contrast thin film platform is proposed for Raman signal processing. Raman signal generation on the chip via waveguide collection integrated with a spectrometer is proposed to increase the efficiency and signal to noise ratio and significantly reduce cost and the size of Raman sensor systems. All components of the proposed Raman detection syst ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Nonlinear-DSP-Enabled RF-Photonic Link

    SBC: RAM PHOTONICS LLC            Topic: N14AT023

    Digital equalizers have been the major enablers in RF communications in terms of managing component imperfections and channel impairments. Specifically, the ever increasing processing power of the dedicating computing processors has availed a steady increase in the ability of complex communication systems to deal with impairments as well as allowing higher capacities in the information transfer.On ...

    STTR Phase II 2016 Department of DefenseNavy
  9. Development of a Micro-glider for Oceanographic Air-Sea Interaction Sampling

    SBC: MRV SYSTEMS LLC            Topic: N14AT020

    This proposal is a collaborative effort between MRV Systems and the Woods Hole Oceanographic Institution. The goal is to develop a new, small, inexpensive autonomous vehicle to investigate mixed layer dynamics and turbulent mixing. The preliminary Phase I design, a Diagonally Operating Platform (DOP), is a profiling float with moveable fins. DOP will turn toward an intended direction within a few ...

    STTR Phase II 2016 Department of DefenseNavy
  10. Electro-Optic Transmissive Scanner

    SBC: ULTIMARA INC            Topic: N17AT001

    The goal of this program is to develop and construct a thin, light weight, low power, large aperture, electro-optic (EO) transmissive scanner that utilizes electro-optically active nanomaterial structures, suitable for UAV’s platform. The nano-material beam-steering technology aperture system offers an ultra-thin Size, Weight, and Power (SWAP) to fit on UAV’s airframe and achieve ultrafast and ...

    STTR Phase II 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government