You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Novel Hybrid Composite Skin Materials

    SBC: TRITON SYSTEMS, INC.            Topic: N18AT024

    Triton Systems, Inc. proposes to develop an affordable, lightweight and durable hybrid composite system for next generation structural frame composites with EMI shielding characteristics that will survive both short and long term thermal exposure, saltwater exposure. The team will develop a hybrid materials system that is an improvement on traditional carbon fiber reinforced polymer (CFRP) systems ...

    STTR Phase I 2018 Department of DefenseNavy
  2. Underwater Blast Injury Monitoring

    SBC: TRITON SYSTEMS, INC.            Topic: DHA17C002

    Triton Systems, Inc. proposes to develop a piezo-textile that can capture underwater explosion pressure wave patterns to ultimately establish and monitor for injury risk severity. We propose to use a state-of-the-art piezo-textile to which we will apply our own proprietary treatments.We will assess our textiles pressure detection performance and durability against a non-textile piezoelectric array ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  3. Multi-Physics Models for Parachute Deployment and Braking

    SBC: CMSOFT, INC.            Topic: AF18AT004

    The main objective of this STTR Phase I effort is two-fold. First, to develop a robust approach for coupling the flow solver Kestrel with the multidisciplinary software tool AERO Suite in order to enable the physics-based modeling and simulation of the dynamics of Aerodynamics Decelerator Systems (ADS) such as parachutes from deployment to terminal velocity or terminal descent and touchdown, and t ...

    STTR Phase I 2018 Department of DefenseAir Force
  4. Complete Lithium Ion Batteries Produced by Additive Manufacturing

    SBC: AKITA INNOVATIONS LLC            Topic: N18AT008

    Demand for portable power continues to expand, and new portable devices require increased variability in form factor. Furthermore, expired batteries may not be easily replaceable due to the lack of standard geometries. New manufacturing technologies are necessary to respond to each of the challenges. Additive manufacturing (AM) is a promising approach that is well known for its ability to quickly ...

    STTR Phase I 2018 Department of DefenseNavy
  5. Non-Destructive Concrete Interrogator and Strength of Materials Correlator

    SBC: KARAGOZIAN & CASE, INC.            Topic: N18AT006

    Karagozian & Case Inc. and the University of Nebraska-Lincoln Department of Civil Engineering are proposing a Phase I STTR to develop a non-invasive and non-destructive methodology capable of measuring concrete material properties, including relevant spatial and statistical information associated with them, for input to hydrocode models. The solution will be both laboratory and field deployable, w ...

    STTR Phase I 2018 Department of DefenseNavy
  6. Internet of Things (IoT) Agent (IoTA) Framework for Evaluating Effectiveness and Efficiency

    SBC: RAM LABORATORIES            Topic: N18AT027

    The Internet of Things (IoT) is increasingly being used to create smart platforms where operators are being removed from the loop. These smart capabilities include collaborative IoT sensors and platforms that are self-aware and provide capabilities of self-prediction, self-configuration, and self-maintenance. To fully take advantage of these advances, however, testbeds and frameworks are needed to ...

    STTR Phase I 2018 Department of DefenseNavy
  7. Layered Inference for Cyber Network Knowledge Synthesis (LINKS)

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: N18AT019

    Providing effective cyber defense for the DoD is compounded by the fact there is not a single physical or logical entity that defines cyberspace. In reality, DoD networks are often composed of three disparate but interacting layers: a physical layer that defines the structure of the network (e.g., computers and routers), a logical layer that represents the static or dynamic state of data within th ...

    STTR Phase I 2018 Department of DefenseNavy
  8. Closed-Loop Extracranial Activation using Reinforcement-learning (CLEAR)

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: AF17BT002

    Increased workloads and operational pressures can degrade human analysts cognitive performance, jeopardizing their ability to safely and effectively carry out mission-critical tasks. To avoid overload and maximize the potential of human operators, a method for conducting real-time evaluation of cognitive state, combined with means to dynamically enhance performance, is required. Novel technologies ...

    STTR Phase I 2018 Department of DefenseAir Force
  9. Mentoring and Responsive Learning through Intelligent Nautical Skill-modeling, Prompting, Intervention, and Feedback during Instructor-Controlled Exer

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: N18AT014

    The safety and operational success of the U.S. Navy (USN) depends on expert navigation, seamanship, and shiphandling skills. Tragically, the Navy experienced four major incidents in 2017. The resulting USN Comprehensive Review identified lapses in basic seamanship and safe navigation skills as contributing factors, reinforcing the critical need for rigorous shiphandling training and proficiency as ...

    STTR Phase I 2018 Department of DefenseNavy
  10. Closed-Loop Feedback Control for Transcranial Direct Current Stimulation

    SBC: QUANTUM APPLIED SCIENCE & RESEARCH INC            Topic: AF17BT002

    Because of rising demand for human analysts and more efficient processing of increasingly large and challenging amounts of intelligence, human limitations on mental workload, cognitive fatigue, and attentionor task engagement, need to be accurately monitored in real-time in order to provide sensitive detection of impaired cognitive states. It is a challenge to continuously monitor these cognitive ...

    STTR Phase I 2018 Department of DefenseAir Force
US Flag An Official Website of the United States Government