You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Novel Cooling System for Laser Enclosure

    SBC: PHOTONWARES CORP            Topic: N18AT001

    We propose to utilize a laser 3D printing manufacturing technique to realize an ultra high efficiency micro-channel laser head cooling system with high thermal load capacity in a small volume package. The new approach incorporates key technical innovations that drastically increase the forced water flow interaction surface area and the metal thermal conductivity. The approach enables conformal geo ...

    STTR Phase I 2018 Department of DefenseNavy
  2. Nondestructive Evaluator for Polymer Ablatives (NEPAL)

    SBC: Intelligent Automation, Inc.            Topic: N18AT011

    Materials for thermal protection are required to protect structural components of space vehicles during the re-entry stage, missile launching systems, and solid rocket motors (SRMs). Polymer resins that have high char retention (e.g., phenolic resins) are the most common matrices in the composite materials for rigid thermal protection systems (TPSs) due to their tunable density, lower cost, and hi ...

    STTR Phase I 2018 Department of DefenseNavy
  3. Non-Destructive Concrete Interrogator and Strength of Materials Correlator

    SBC: KARAGOZIAN & CASE, INC.            Topic: N18AT006

    Karagozian & Case Inc. and the University of Nebraska-Lincoln Department of Civil Engineering are proposing a Phase I STTR to develop a non-invasive and non-destructive methodology capable of measuring concrete material properties, including relevant spatial and statistical information associated with them, for input to hydrocode models. The solution will be both laboratory and field deployable, w ...

    STTR Phase I 2018 Department of DefenseNavy
  4. Next Generation Radar and Signal Processing Using the Cell Broadband Engine

    SBC: ULTRA COMMUNICATIONS, INC.            Topic: N06T005

    The Cell processor architecture represents a significant shift in deeply coupled multi-core processor architecture. In the first implementation, the Cell Broadband Engine (CBE) has broken new ground in clock speed, density and power dissipation. By creating a design optimized for a specific class of algorithms, the CBE can deliver peak performance of over 250Gflops and has been measured with susta ...

    STTR Phase I 2006 Department of DefenseNavy
  5. Next-Generation, Power-Electronics Materials for Naval Aviation Applications

    SBC: SIXPOINT MATERIALS, INC.            Topic: N18AT004

    This STTR project develops an innovative seed fabrication technology to address the fundamental size-quality limitation of gallium nitride (GaN) substratesthe indispensable key component for GaN-based vertical high-power devices. Currently, there is no viable GaN technology to realize large-area and low-defect substrates simultaneously. The technology producing 6" and larger GaN wafers results in ...

    STTR Phase I 2018 Department of DefenseNavy
  6. Near-infrared Diffuse Optical Imaging for Noninvasive Monitoring of Cortical Spreading Depression

    SBC: PHYSICAL SCIENCES INC.            Topic: A06T028

    Cortical spreading depression (CSD) is a region of transient electrical and metabolic failure that propagates through peri-lesional brain tissue. Although characteristics of CSD have been shown to be relevant to injury outcome, subdural electrode measurements currently in use restrict monitoring only to patients requiring craniotomy. A portable, noninvasive monitoring device applicable to all pa ...

    STTR Phase I 2006 Department of DefenseArmy
  7. Navy Applications of 4th Generation Deeply Coupled Computing Architectures

    SBC: CPU TECHNOLOGY, INC.            Topic: N06T005

    Warfare is changing; there is a need for airborne and space-based sensor systems to detect small, highly maneuverable targets against a strong clutter background in the presence of jamming. Space-Time Adaptive Processing (STAP) is a new signal processing technique for advanced radar systems that allows for performance enhancements over conventional approaches. Current power, weight, and size cons ...

    STTR Phase I 2006 Department of DefenseNavy
  8. Nanotube Transparent Electrodes for Nanomaterial Photovoltaics

    SBC: Eikos, Inc.            Topic: AF06T026

    Eikos Inc. and the National Renewable Energy Laboratory propose to develop nanomaterial transparent electrodes to enhance the efficiency of three junction solar cells. Eikos leads the world in developing transparent conductive electodes based on carbon nanotubes (CNTs). Branded as Invisicon®, our patented technology has already been successfully employed to improve solar cell performance. Eikos c ...

    STTR Phase I 2006 Department of DefenseAir Force
  9. Nanoscale Antennas

    SBC: Nanolab, Inc            Topic: A06T012

    This effort will culminate in the demonstration of a new class of antennas, to allow the coupling of RF signals with nanoscale devices and sensors. An antenna for RF must be millimeters long, and nanoscale in diameter, if it is to interact with nanoscale devices. The aligned carbon nanotubes grown at NanoLab are synthesized in millimeter lengths, have good conductivity, and therefore should make ...

    STTR Phase I 2006 Department of DefenseArmy
  10. Multi-Physics Models for Parachute Deployment and Braking

    SBC: CMSOFT, INC.            Topic: AF18AT004

    The main objective of this STTR Phase I effort is two-fold. First, to develop a robust approach for coupling the flow solver Kestrel with the multidisciplinary software tool AERO Suite in order to enable the physics-based modeling and simulation of the dynamics of Aerodynamics Decelerator Systems (ADS) such as parachutes from deployment to terminal velocity or terminal descent and touchdown, and t ...

    STTR Phase I 2018 Department of DefenseAir Force
US Flag An Official Website of the United States Government