You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Innovative Technologies Supporting Affordable Increases in Power, Efficiency, and Bandwidth for Ballistic Missile Defense System (BMDS) X-Band Radars

    SBC: Group4 Labs, LLC            Topic: MDA06T012

    This Phase-II STTR proposal proposes the use of a new class of diamond-seeded solid-state material system for the manufacture of virtually all packaged intense heat-generating solid-state electronics in X-band and Ballistic Missile Defense radar components and systems. In this proposal wherein much preliminary (also MDA-funded) work has been demonstrated hitherto by the authors, Gallium Nitride-on ...

    STTR Phase II 2007 Department of DefenseMissile Defense Agency
  2. Innovative Processing Techniques for Additive Manufacture of 7000 Series Aluminum Alloy Components

    SBC: SENSIGMA LLC            Topic: N18AT005

    Naval aircraft components are routinely made of 7000 series aluminum alloys due to their strength, weight and fatigue properties. Present Additive Manufacturing (AM) processes fall short of producing 7000 series Al alloys successfully due to lack of porosity, and thermal and composition control. In-situ methods implemented to date largely only yield information about the component surface and othe ...

    STTR Phase II 2020 Department of DefenseNavy
  3. Innovative Multi-scale/Multi-physics based Tool for Predicting Fatigue Crack Initiation and Propagation in Aircraft Structural Components using Phase

    SBC: Coreform LLC            Topic: N16AT003

    The purpose of this Phase II project is to develop computational modeling methods that are able to describe the propagation and interaction of fatigue cracks using the phase-field methodology within the numerical framework of isogeometric analysis (IGA). The resulting computational platform, while focused on fracture and fatigue, will be general, in that any phase-field method can be easily incorp ...

    STTR Phase II 2018 Department of DefenseNavy
  4. Innovations in Designing Damage Tolerant Rotorcraft Components by Interface Tailoring

    SBC: HARP ENGINEERING LLC            Topic: N19AT003

    The performance of a composite material is heavily influenced by the strength and toughness of the interlaminar region, which is the resin rich area between the plies of a fiber reinforced composite.  The interlaminar region generally provides a direct path for crack propagation since no continuous reinforcement is present and is often the cause of failure in materials subjected to cyclic loadin ...

    STTR Phase II 2020 Department of DefenseNavy
  5. Infrared Micro-Laser Arrays for Target Image Projection

    SBC: ATTOLLO ENGINEERING, LLC            Topic: AF16AT22

    Current scene projection hardware is challenged to simultaneously meet the requirements for high peak temperature (> 2000K), high resolution (2Kx2K), response time < 4 ms, cryogenic and temporally uniform photon flux. MEMS, Resistor arrays, liquid crystals, and photonic crystals all suffer in one or more areas. MEMS suffer from flicker and low dynamic range. Resistor arrays suffer from low frame r ...

    STTR Phase II 2018 Department of DefenseAir Force
  6. Improved High-Frequency Bottom Loss Characterization

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N17AT026

    We propose development of an improved bottom database suitable for use in the frequency range of 1-10 kHz. Measured transmission loss (TL) and reverberation level (RL) will be jointly processed in building the database. The influence of the rough sea surface, rough seafloor, as well as subbottom heterogeneity will be accounted for during database generation. The rough sea surface will be character ...

    STTR Phase II 2018 Department of DefenseNavy
  7. Hypersonic Experimental Aerothermoelastic Test (HEAT)

    SBC: Global Aerospace Corporation            Topic: AF16AT24

    The U.S. Air Force is interested in developing hypersonic vehicles including reusable transport aircraft, cruise missiles, and unmanned systems. Hypersonic flight regimes result in multifaceted and very difficult design challenges that can be encapsulated into an aerothermoelastic problem, which is a complex interaction of structural, thermal, and aerodynamic mechanisms. When a flexible structural ...

    STTR Phase II 2018 Department of DefenseAir Force
  8. High-Quality AlGaN Substrates for Optical and Electronic Applications

    SBC: KYMA TECHNOLOGIES, INC.            Topic: AF17AT024

    Kyma Technologies, the leading domestic supplier of crystalline III-N substrate materials, is teamed with leading AlGaN materials & device experts at Sandia National Laboratories (SNL) to develop high-quality n-type conductive 2-inch diameter epi-ready free-standing AlGaN substrates in support of next generation AlGaN devices with applications in ultraviolet optoelectronics, power electronics, and ...

    STTR Phase II 2018 Department of DefenseAir Force
  9. High Performance Energetic Propellant Ingredient Process Research and Development

    SBC: NALAS ENGINEERING SERVICES INC            Topic: N16AT021

    CL-20 is the most powerful conventional explosive known, but its high cost has limited its adoption in a range of potential applications. Par of the challenge in making these materials is the complexity of the reaction used to prepare the polycyclic cage. The complexity of this reaction makes it difficult to have insight into the reaction and to improve it. Additionally, several of the intermediat ...

    STTR Phase II 2018 Department of DefenseNavy
  10. Highly efficient UV LEDs for disinfection

    SBC: ADROIT MATERIALS, INC.            Topic: A18BT006

    Treatment of water with ultraviolet (UV) light, which destroys target DNA of microorganisms, is the safest, most reliable, and sustainable way of freeing water from microbial contamination. This process is desired in place of chlorination and is widely used in the US for wastewater treatment. We propose the development of a highly efficient UV LED with emission at 265 nm, with EQE>30%, and WPE>15% ...

    STTR Phase II 2020 Department of DefenseArmy
US Flag An Official Website of the United States Government