You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Rapid Nondestructive Inspection of Traditionally Uninspectable Adhesively-Filled Composite Joints

    SBC: THERMAL WAVE IMAGING INC            Topic: AF18BT016

    NDI of composite Pi/T-Joints presents significant challenges to existing inspection technologies resulting in a barrier to implementation in production. We will investigate feasibility of developing an active thermography NDI solution for real-world inspection of composite structures with T / Pi- joints during the manufacturing process (both green and cured states). Based on the extensive experien ...

    STTR Phase I 2019 Department of DefenseAir Force
  2. Real-Time Stress Biomarker Sensor

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: AF18CT001

    Research is currently identifying new biochemical markers to help monitor cognition and stress in the human body and enhance human performance. Traditional biometric markers like heart rate, temperature, oxygen partial pressure, blood glucose, electrolyte concentration, and others have been correlated with cognition and stress states. However, the correlation is indirect. Molecular biomarkers with ...

    STTR Phase I 2019 Department of DefenseAir Force
  3. Portable Bioprinted Organoids for Physiological Monitoring

    SBC: CFD RESEARCH CORPORATION            Topic: AF19AT002

    hazardous chemicals such as JP8, chromium, and byproducts of led-free frangible ammunition and to hazardous environments. Of the many dangers Airmen face, the hypoxia-like unexplained physiological events pilots face are some of the most dangerous and elusive. Current wearable sensors cannot decouple complex, interdependent in vivo response. We propose to develop (design, fabricate, test, and demo ...

    STTR Phase I 2019 Department of DefenseAir Force
  4. Multisensor-Integrated Organ-on-a-Chip

    SBC: SPECTRAL ENERGIES LLC            Topic: AF19AT002

    The Air Force seeks three-dimensional bioprinted tissue that can accurately replicate complex multi-cell function and that can be integrated with biosensors. To address this need, Spectral Energies in collaboration with Prof. Khademhosseini of the University of California, Los Angeles (UCLA) proposes to develop an organ-on-a-chip system. The organ-on-a-chip system will be capable of accurately mod ...

    STTR Phase I 2019 Department of DefenseAir Force
  5. Remote Sensing System for Monitoring Cardiopulmonary Signals

    SBC: VIRTUAL EM INC.            Topic: AF19AT003

    Virtual EM and Case Western Reserve University are teaming to propose a standoff cardiopulmonary sensing technology to aid remote monitoring of airman and others ' physiological state of health both in the field and in the office environments. While the pulmonary sensing unit could be operated meters away, the cardio signals are picked up in closer proximity to the body.

    STTR Phase I 2019 Department of DefenseAir Force
  6. High Precision Remote Cardiopulmonary Monitoring through combined iPPG and Low Power Radar

    SBC: Cardiac Motion, LLC            Topic: AF19AT003

    Vital sign, such as respiration rate and heart rate, provide important indications of the physiological and mental conditions of an Airman. Being able to understand the physiological and mental conditions of an operator is therefore of vital importance to improving the efficiency and efficacy of future Air Force operations. Current state-of-the-practice in continuous cardiopulmonary vital sign mon ...

    STTR Phase I 2019 Department of DefenseAir Force
  7. Vibration imaging for the characterization of extended, non-cooperative targets

    SBC: EXCITING TECHNOLOGY LLC            Topic: AF19AT006

    The imaging vibrometer development will be based on a representative Directed Energy (DE) aperture assumed to be 30 cm. This effort will provide both DE and Combat IDentification (CID), modes for relative short range DE operations, and an ISR Combat IDentification (CID) mode for operation at extended range. A combination of analytic derivations and wave optics simulations will be used to define a ...

    STTR Phase I 2019 Department of DefenseAir Force
  8. Vibration imaging for the characterization of extended, non-cooperative targets

    SBC: Guidestar Optical Systems, Inc.            Topic: AF19AT006

    Locating objects that vibrate is a way to discern potential threats and locate targets. However, current vibrometry technology typically measures only the global vibration of target and cannot create an extended spatial measurement of the vibration profile of the target. These solutions cannot identify what the target is, nor can they locate potential weak spots on the target, because they lack sp ...

    STTR Phase I 2019 Department of DefenseAir Force
  9. Optimization of Sodium Guide Star Return using Polarization and/or Modulation Control

    SBC: APPLIED OPTIMIZATION, INC.            Topic: AF19AT008

    The research objective of the proposed work is to increase the efficiency of the laser return of a Sodium Guide Star Laser (SGSL) reflected off the sodium layer for increased reliability and applicability of the artificial guide star technique. During Phase I, we will demonstrate the concept of maximizing the SGSL signal returns using numerical simulations that account for the effects of atmospher ...

    STTR Phase I 2019 Department of DefenseAir Force
  10. Optimization of Sodium Guide Star Return using Polarization and/or Modulation Control

    SBC: ROCHESTER SCIENTIFIC LLC            Topic: AF19AT008

    Large ground-based telescopes require adaptive optics (AO) to correct for distortions introduced by atmospheric turbulence. In order to function, the AO system must track a bright point source. Although a natural star may be used, full sky coverage requires an artificial beacon created with a laser. The most common type of laser guide star (LGS) employs the mesospheric layer of sodium atoms at an ...

    STTR Phase I 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government