You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Theoretical Innovations in Combustion Stability Research: Integrated Analysis and Computation

    SBC: Kassoy Innovative Science Solutions            Topic: AF09BT38

    Quantitative predictions of reactive flow dynamics from large-scale simulations of Liquid Rocket Engines (LRE) appear to be model dependent. Relationships and coupling among the dominant mechanisms most responsible for destabilization are obscured by the complexities of the model and subtle consequences of inherent ad hoc approximations not supported by mathematical rationale. The reliability of ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Autonomous Decision Making via Hierarchical Brain Emulation-- 19-009

    SBC: METRON INCORPORATED            Topic: AF19AT009

    The objective of this project is to develop human intelligence-inspired algorithms that exploit multi-modal sources of low and high quality data to achieve a series of objectives such as detection, localization, tracking, and classification. A Bayesian model-based hierarchical adaptive decision making (HADM) algorithm will be developed which includes multiple levels of decision making organized in ...

    STTR Phase I 2019 Department of DefenseAir Force
  3. Exploitable Physics for Recognition and Classification

    SBC: MATRIX RESEARCH INC            Topic: AF12BT06

    ABSTRACT: The objective of this effort is to develop innovative methods for deriving a sparse set of physical target features that can be used for exploitation of air to ground signature data collected from sensor systems including electro-optical, infrared, and laser radar. Current classification methods require near exact replication of the original imaging parameters, or extensive modeling in ...

    STTR Phase I 2013 Department of DefenseAir Force
  4. Computerized Robotic Delayering and Polishing System

    SBC: SPECTRAL ENERGIES LLC            Topic: DMEA18B001

    The proposed research and technical objectives in this project deal with computerized automatic delayering and polishing system that would be applicable to both commercial and government semiconductor device research and development with applications including Failure Analysis (FA), Fault Isolation (FI), and Reverse Engineering (RE) of semiconductor microelectronic devices. This project could hel ...

    STTR Phase I 2019 Department of DefenseDefense Microelectronics Activity
  5. Carbon Nanotube FET Modeling and RF Circuit Simulation

    SBC: Electronics of the future, Inc..            Topic: AF18BT006

    The project will develop and validate a geometry scalable CNTFET compact model for HF circuit design and extract the model parameters from the measured characteristics of the fabricated devices. The ballistic and quasi-ballistic transport, quantum and parasitic effects will be accounted for the predicted performance will be compared to 130 nm RF Si-CMOS to determine the conditions for breaking eve ...

    STTR Phase I 2019 Department of DefenseAir Force
  6. Ultrahigh-Bandwidth Robust Performance Diagnostics for Rotating Detonation Engines

    SBC: SPECTRAL ENERGIES LLC            Topic: AF19AT011

    Spectral Energies proposes to design a multisensory diagnostic suite for measurements within elevated-pressure RDEs. This sensor will utilize tunable-laser absorption spectroscopy to measure temperature, pressure and H2O concentrations in the annulus of a rocket-RDE and background-oriented schlieren imaging system for flow density gradient imaging to provide time resolved information about the sho ...

    STTR Phase I 2019 Department of DefenseAir Force
  7. Multisensor-Integrated Organ-on-a-Chip

    SBC: SPECTRAL ENERGIES LLC            Topic: AF19AT002

    The Air Force seeks three-dimensional bioprinted tissue that can accurately replicate complex multi-cell function and that can be integrated with biosensors. To address this need, Spectral Energies in collaboration with Prof. Khademhosseini of the University of California, Los Angeles (UCLA) proposes to develop an organ-on-a-chip system. The organ-on-a-chip system will be capable of accurately mod ...

    STTR Phase I 2019 Department of DefenseAir Force
  8. Terahertz Frequency Materials Testing at Cryogenic Temperatures and in High Magnetic Fields

    SBC: Lake Shore Cryotronics, Inc.            Topic: AF12BT08

    ABSTRACT: Terahertz (THz) spectroscopies offer unmatched non-contact probing of low-energy excitations underlying electronic transport and magnetism in a wide range of novel materials. To-date, expensive and complex THz Time Domain Spectroscopy (THz-TDS) systems are the most common THz source used in these studies. Lower cost, continuous wave (CW-THz) spectroscopy systems can offer comparable per ...

    STTR Phase I 2013 Department of DefenseAir Force
  9. Development of a Rapidly Deployable Scaled Fighter for Aeroelastic Research

    SBC: MAINSTREAM ENGINEERING CORP            Topic: AF12BT12

    ABSTRACT: Experimental testing of dynamic models has been performed for more than 50 years and a wealth of data exists for individual models. However, this data is often either restricted as proprietary or is not suitable for CSE tool validation as a result of incomplete model or test information. Mainstream Engineering proposes to design, fabricate, and test a scaled fighter for aeroelastic ...

    STTR Phase I 2013 Department of DefenseAir Force
  10. Vibration imaging for the characterization of extended, non-cooperative targets

    SBC: EXCITING TECHNOLOGY LLC            Topic: AF19AT006

    The imaging vibrometer development will be based on a representative Directed Energy (DE) aperture assumed to be 30 cm. This effort will provide both DE and Combat IDentification (CID), modes for relative short range DE operations, and an ISR Combat IDentification (CID) mode for operation at extended range. A combination of analytic derivations and wave optics simulations will be used to define a ...

    STTR Phase I 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government