You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Metal-blacks for plasmonic enhancement of solar-cell efficiency

    SBC: Physical Engineering Corporation            Topic: AF09BT39

    This Phase I STTR proposal will demonstrate nanostructured “metal-black” coatings to enhance absorption by thin film solar cells. The problem is that silicon has low absorption due to its indirect gap. The opportunity is that nano-scale metallic scattering centers increase the effective optical path length and enhance the solar electric-field strength in thin-film solar cells, leading to more ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Lasers Based on Gas Filled Hollow-Core Photonic Crystal Fibers

    SBC: IRFLEX CORP            Topic: AF18BT015

    Current continuous wave (CW) and pulse mid-wave infrared (MWIR) lasers have design and performance limitations that constrain their usability in some critical Air Force applications. There is an important need to create a new class of MWIR laser sources with less drawbacks and higher pulse energies and CW powers. The proposed work will demonstrate the technical feasibility of an innovative MWIR la ...

    STTR Phase I 2019 Department of DefenseAir Force
  3. Laser Induced Surface Improvement for Superior Wear Resistance in Extreme Conditions

    SBC: CFD RESEARCH CORPORATION            Topic: AF09BT19

    The objective of this Phase I project is to evaluate the use of novel Laser Induced Surface Improvement (LISI) techniques to provide surface modification to substrate materials which will provide superior wear resistance in extreme conditions. The specific application of interest is the hypersonic metal-to-metal contact that occurs at high speed test track facilities that can and has lead to catas ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Intra-Subaperture Adaptive Optical (ISAO) System

    SBC: NUTRONICS, INC.            Topic: AF12BT13

    ABSTRACT: Current and projected limitations on the maximum power from a high power single mode fiber laser amplifier impose architectural limitations on a high power phased array laser weapon system. Prior studies strongly indicate that when faced with this limitation the optimal approach is (to borrow the term for Paul McManamon) a Phased Array of Phased Arrays (PAPA) geometry wherein large(r) ...

    STTR Phase I 2013 Department of DefenseAir Force
  5. Integrated Quantum Systems Design and Fabrication Technology

    SBC: Guided Particle Systems Inc.            Topic: AF19BT001

    Our proposal is focused on determining the need and feasibility for integrated quantum systems design and fabrication technologies to enable rapid research and development prototyping, and subsequent production, and an industrial base for integrated quantum machines and systems. We focus on the problem of field-able quantum systems for communication networks to support the Air Force as a use case ...

    STTR Phase I 2019 Department of DefenseAir Force
  6. Instrumentation for hypersonic, air-breathing engines

    SBC: Luna Innovations Incorporated            Topic: AF09BT32

    Luna Innovations Incorporated and CURBC (Calspan – University of Buffalo Research Center) are proposing to develop miniature, high-speed, high-temperature, fiber-optic pressure sensors that will fill the void that currently exists between ground and flight test instrumentation. The sensors small size (ø 0.007”) and high-sensitivity (better than ±0.01 psi) combined with a high-speed fiber-op ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. Innovative Combat Simulation to Craft Tomorrow’s UAV Operational Doctrine

    SBC: John Tiller Software, Inc            Topic: AF09BT31

    This proposal is for the use of state-of-the-art computer wargames to be used in the research on the impact and optimal use of unmanned aerial vehicles (UAVs) in realistic combat scenarios. High fidelity, historically calibrated wargames ranging from sub-tactical ground-centric game engines through operational, strategic, air campaign, and naval-centric game engines will be used to address the fu ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. Innovations in Physical Modeling and Statistical Exploitation of Electromagnetic Target Signatures

    SBC: Five Focal LLC            Topic: AF12BT06

    ABSTRACT: Feature extraction and target recognition suffer from a lack of a reliable model for both exploitable target features and the electromagnetic signature they possess. Signature data are often hard to interpret and invert to recover the target robustly. Bayesian learning approaches to statistical pattern recognition are based on the use of training sets of inputs and outputs, a data mode ...

    STTR Phase I 2013 Department of DefenseAir Force
  9. Improving Software and Data Security in Industrial Control Systems

    SBC: Pikewerks Corporation            Topic: OSD09T003

    Industrial Control Systems (ICS) are critical elements in electrical, water, oil/gas, and manufacturing services involving supervisory control and data acquisition (SCADA), distributed control systems (DCS), and programmable logic controllers (PLCs). These systems allow operators to monitor sensor data and remotely control field devices. Initially, these devices were designed for closed-network or ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Hybrid Carbon-Metal Nanowires Mediating Direct Electron Transfer from Redox Enzyme to Electrode

    SBC: Luna Innovations Incorporated            Topic: AF09BT03

    The electron transferring unit of enzymes – apoenzyme and cofactor are deeply buried inside its protein structure, therefore efficient electronic communication between the electrode and the biocatalytic enzyme is inefficient. The development of a reproducible approach that allows efficient electronic connection between enzymes and electrodes would meet the major technical needs in the developmen ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government