You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High Efficiency Gain Media for Eye-Safer 1.55 µm Ultrafast Fiber Amplifiers

    SBC: Raydiance, Inc.            Topic: N10AT012

    Compelling applications of infrared ultrafast lasers—ranging from ship self defense and aircraft self defense, to medical and micromachining applications—have defined a critical performance point at about one millijoule per pulse from a reliable and robust portable laser system with high average power. Increasing amplifier efficiency is a critical need in order to reach high average powers nee ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Development of High-Efficiency, High Power Electron Beam Accelerator Technologies

    SBC: Jp Accelerator Works            Topic: N10AT023

    This research investigates the feasibility of improving operational readiness, reliability and availability of high current cryogenic rf linear accelerators using a cryogenic compatible resonant coupling technique to couple all of the accelerator sections together, including any room temperature portion. This technique guarantees a single resonant frequency for the system insuring rapid turn on. T ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Fracture Evaluation and Design Tool for Welded Aluminum Ship Structures Subjected to Impulsive Dynamic Loading

    SBC: Global Engineering and Materials, Inc.            Topic: N10AT041

    A software tool for fracture evaluation and load deflection prediction of welded aluminum ship structures subjected to impulsive loading will be developed by enhancing and integrating an existing extended finite element method (XFEM) for dynamic fracture of thin shells in Abaqus. The software package will be able to model arbitrary crack paths as dictated by the physics of the scenario, completely ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Innovative Application of Urban ISR (Intelligence, Surveillance, Reconnaissance) Imagery for High Fidelity Training Devices

    SBC: CG2, Inc.            Topic: N09BT038

    In today’s information age, there are vast resources of data on every region of the Earth. The application of geospecific imagery over large areas has been limited to terrain for the most part. The hindrances to full use of geospecific imagery are the labor required to create the databases, and limits on the rendering capacity of current image generators (IGs), both in polygon count and texture ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Rapidly Deployable Display with Continuous Self-Correction

    SBC: VSee Lab LLC            Topic: N07T003

    During the Phase I period, we have successfully developed and demonstrated all the major technical components to achieve the goal of providing seamless large scale display anywhere, anytime, for any content. Based on the solid foundation we have built from Phase I, we plan to improve and integrate various components to develop intelligent projectors that can be networked together to create a seaml ...

    STTR Phase II 2010 Department of DefenseNavy
  6. Robust, Real Time, Full Field Strain Monitoring Over Large Areas

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: N09T010

    NextGen Aeronautics in collaboration with Virginia Tech plan to build on our Phase I work and propose to further develop our concepts and designs for a scalable, fast and easy to use optical strain measurement system. Our proposed Phase II effort will focus on the development of a dual level optical camera system which uses one set of cameras to measure strains over the entire test specimen and a ...

    STTR Phase II 2010 Department of DefenseNavy
  7. Large Area IR Metamaterial Films

    SBC: Sensormetrix INC            Topic: N09T018

    We are proposing to develop a process for large area fabrication of metamaterial films with electromagnetic responses that can be manipulated in the infrared region to enable tailored reflectivity and emissivity. Because the approach is based on metamaterials, this technique can readily be scaled to higher or lower frequencies.

    STTR Phase II 2010 Department of DefenseNavy
  8. Photonic Switched True Time Delay (TTD) Beam Forming Network

    SBC: Dymas Research Incorporated            Topic: N08T007

    Photonic links and networks offer numerous advantages to analog RF systems including inherent wide bandwidth, a reduced size, weight and improved flexibility, and nearly lossless signal. Current all-electronic delay line systems based on microwave components suffer from high signal loss and dispersion as well as large size and weight. An efficient way to achieve true-time-delay beamforming is to u ...

    STTR Phase II 2010 Department of DefenseNavy
  9. Advanced Compressor Technology for Ultrafast Fiber Lasers

    SBC: Raydiance, Inc.            Topic: N07T009

    Ultrafast laser technology offers compelling capabilities for national defense, state-of-the-art health care, and the materials processing industry. The development of this technology into commercial form factor hardware has been limited mostly by the size, cost, complexity, and/or pulse energy limitations of current ultrafast laser systems. Optical fiber based ultrafast lasers have dramatically d ...

    STTR Phase II 2010 Department of DefenseNavy
  10. Acoustic Intercept Receiver for Naval Special Warfare Undersea Vehicles

    SBC: INFORMATION SYSTEMS LABORATORIES INC            Topic: N09T012

    Information Systems Laboratories (ISL) and Florida Atlantic University (FAU) propose to develop and test a system that uses existing signal processing algorithms coupled with innovative construction technology developed ISL under our E-Field sensor programs and FAU under UUV programs. The Challenge is to develop a small system package with the capability to intercept active threat emissions early ...

    STTR Phase II 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government