You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Bio-mathematical Models of Aggregated Tissues & Organ Properties

    SBC: Corvid Innovation LLC            Topic: DHP16A001

    Realistic surgical simulation requires a combination of representative tissue geometry, accurate tissue material properties and lifelike tool-tissue interaction forces. Recent advances in computational power and imaging modalities have provided the capability to represent the anatomical details required for surgical training; however, the mathematical models which govern the underlying tissue pro ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  2. Robust Mid-IR Optical Fibers for Extreme Environments

    SBC: Lambda Photonics, LLC            Topic: AF15AT02

    ABSTRACT: Infrared sources and sensors are becoming increasingly useful for military and commercial applications. We propose to exploit recent advances in multimaterial fiber technology to produce a new class of optical infrared fibers that are robust and low in cost for high-power, high-stress environments. The use of beam confining fiber optics reduces or eliminates issues with misalignment or d ...

    STTR Phase I 2016 Department of DefenseAir Force
  3. Impact of Hypersonic Flight Environment on Electro-Optic/Infrared (EO/IR) Sensors

    SBC: Analysis and Applications Associates, Inc.            Topic: AF15AT40

    EO/IR sensors can provide high spatial resolution images using multiple frequency bands ranging from the visible to mid-wave IR. EO/IR sensors have been very successful for terrain imaging from subsonic aircraft and from satellites. Imaging using these platforms has been studied extensively. EO/IR sensors can provide high spatial resolution images using multiple frequency bands ranging from the v ...

    STTR Phase II 2016 Department of DefenseAir Force
  4. Bio-Inspired Bone, Wing, Tail, and Muscle Structures for Morphing Aircraft

    SBC: Prioria Robotics, Inc.            Topic: AF15AT01

    ABSTRACT: Our focus in this proposal is to perform basic research to create bio-inspired 3-D morphing mechanical structures which are a gateway technology to enable true 3-D morphing flight. Prioria and Virginia Tech University will team to perform basic research into bio-inspired structure such as artificial bones/wings/feathers and artificial muscles. Prioria will establish technical feasibility ...

    STTR Phase I 2016 Department of DefenseAir Force
  5. Prototype for Rapid Reconstitution for Ground-based Space Situational Awareness Capability for Near-geosynchronous Objects

    SBC: DFM Engineering Inc            Topic: AF16AT05

    We propose to research the feasibility of rapidly reconstituting a ground based sensor system for space situational awareness with a large fraction of the capability of the GEODSS sensor system. This system can be deployed quickly to a GEODSS site where ...

    STTR Phase I 2016 Department of DefenseAir Force
  6. Securing the Internet of Things in Tactical Environments

    SBC: Kalos Technologies, Inc.            Topic: AF16AT10

    Kalos Technologies Inc. (Kalos) and Temple University submit together this STTR Phase I proposal entitled Securing the Internet of Things in Tactical Environments to the Air Force in response to solicitation topic AF16-AT10: Securing the Internet of Things. It is the Kalos and Temples effort in the development of hardware-based security, embedded system security, secure communication, and secure I ...

    STTR Phase I 2016 Department of DefenseAir Force
  7. Heterogeneous Data Discovery Using Deep Neural Networks

    SBC: KickView Corporation            Topic: AF16AT12

    Improving feature extraction, event detection, and target classification in multi-sensor systems requires new mathematical methods and processing techniques. In addition, previous research and experience suggests that leveraging sensor data that has not experienced significant dimensionality reduction can preserve subtle features when processed jointly with other relevant data. However, traditiona ...

    STTR Phase I 2016 Department of DefenseAir Force
  8. Computation of Structural Energetic Materials Under Shock Loading: a Meso-Scale Framework

    SBC: STREAMLINE NUMERICS, INC.            Topic: AF16AT23

    Structural energetic materials or multifunctional energetic materials offer the ability to combine the high energy release rates of traditionalhigh explosives with structural strength. When successfully formulated therefore they can lead to light-weight, high-performance and hithertoinaccessible designs of munitions. The key feature of structural energetic materials (SEMs), perhaps even more so th ...

    STTR Phase I 2016 Department of DefenseAir Force
  9. Modeling and Simulation for Design, Development, Testing and Evaluation of Autonomous Multi-Agent Models

    SBC: Eduworks Corporation            Topic: AF15AT14

    U.S. forces are benefiting from automation systems of unprecedented sophistication, empowered by advances in artificial intelligence (AI) and human-systems interaction. In air combat operations, onboard intelligent assistants monitor the aircraft, interpret and carry out commands, and report aircraft and system status, mission progress, threats and alerts. Because pilots and agents are part of a n ...

    STTR Phase II 2016 Department of DefenseAir Force
  10. Active Control of a Scramjet Engine

    SBC: Ahmic Aerospace LLC            Topic: AF15AT19

    Scramjet engines are designed to operate across a wide Mach number range and typically incorporate isolator sections to provide sufficient back-pressure margin and prevent unstart. As military requirements become increasingly demanding, an active, closed-loop control system is necessary to maintain engine stability and power output. During Phase I, key components of a scramjet control system were ...

    STTR Phase II 2016 Department of DefenseAir Force
US Flag An Official Website of the United States Government