You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Spatiotemporal Nonlinear Data Analysis Tools and Reduced Order Models for Prediction of High-Pressure Reacting Flow Dynamics and Control

    SBC: SPECTRAL ENERGIES LLC            Topic: AF12BT15

    ABSTRACT: This Phase-I research effort is designed to forward the engineering investigation of the dynamics and control of turbulent combustion in high-pressure combustion systems by developing a set of game-changing nonlinear analysis tools that can significantly improve the post-processing speed and intelligent data mining of large numerical or experimental data sets. Moreover, a system based o ...

    STTR Phase I 2013 Department of DefenseAir Force
  2. Highly-Scalable Computational-Based Engineering Algorithms for Emerging Parallel Machine Architectures

    SBC: RNET TECHNOLOGIES INC            Topic: AF10BT13

    ABSTRACT: RNET and The Ohio State University propose to use algorithmic modifications and multi-level parallelization techniques and tools to improve the scalability of the aero-line/aero-elastic coupled CFD/CSD codes relevant to the DoD/AF (e.g., CREATE/Kestrel). The optimizations will address inter-node and intra-node parallelization to better target emerging compute architectures (e.g., multi ...

    STTR Phase II 2013 Department of DefenseAir Force
  3. Infrared Metamaterials for Emission Phase Control

    SBC: PLASMONICS INC            Topic: AF10BT30

    ABSTRACT: Under the first phase of the program, Plasmonics Inc. and Sandia National Laboratories investigated a range of surfaces that yield non-Lambertian emission profiles in the thermal infrared. The second phase of this program will further maturate the designs developed in the first phase of the program. With the vast majority of the analytical work complete, focus in the second phase will b ...

    STTR Phase II 2013 Department of DefenseAir Force
  4. Operating System Mechanisms for Many-Core Systems

    SBC: SECURBORATION, INC.            Topic: OSD11T04

    In the Phase I portion of this STTR, Securboration and renowned multicore expert Dr. Frank Mueller from North Carolina State University designed, developed, and benchmarked the proof-of-concept Pico-kernel Adaptive and Scalable Operating-system (PICASO) for many-core architectures. The Securboration Team took a scientific, experimentation-based approach to identifying and resolving shortcomings wi ...

    STTR Phase II 2013 Department of DefenseAir Force
  5. Design and Analysis of Multi-core Software

    SBC: SECURBORATION, INC.            Topic: OSD11T03

    Modern processor design is trending increasingly toward multicore architectures. This is problematic for programmers because writing a correct parallel program is known to be difficult compared to writing the equivalent sequential program. Additionally, a wide body of sequential code has already been developed that cannot exploit the power offered by these new cores because it was written in a s ...

    STTR Phase II 2013 Department of DefenseAir Force
  6. Autonomic Performance Assurance for Multi-Processor Supervisory Control

    SBC: COLORADO ENGINEERING INC.            Topic: OSD11T01

    Multi-processor computing systems are growing in capacity and usage. They encompass multiple, distributed implementations as well as heterogeneous, embedded computing architectures. The processing density enabled by such approaches holds promise for unmanned combat air vehicles (UCAVs) with their plethora of mission sensors and command and control processing requirements. However, the software ...

    STTR Phase II 2013 Department of DefenseAir Force
  7. Nublu: Assured Information Sharing in Clouds

    SBC: MODUS OPERANDI INC            Topic: AF11BT30

    ABSTRACT: We propose to develop an assured information sharing framework for cloud-based systems that leverages our ongoing work in the areas of policy-based usage management and semantic interoperability. The development of this framework will involve the creation of a novel approach to information sharing that treats security as a commodity that can be dynamically provisioned within the cloud, ...

    STTR Phase II 2013 Department of DefenseAir Force
  8. Prototype for Rapid Reconstitution for Ground-based Space Situational Awareness Capability for Near-geosynchronous Objects

    SBC: DFM Engineering Inc            Topic: AF16AT05

    We propose to research the feasibility of rapidly reconstituting a ground based sensor system for space situational awareness with a large fraction of the capability of the GEODSS sensor system. This system can be deployed quickly to a GEODSS site where ...

    STTR Phase I 2016 Department of DefenseAir Force
  9. Bio-Inspired Bone, Wing, Tail, and Muscle Structures for Morphing Aircraft

    SBC: Prioria Robotics, Inc.            Topic: AF15AT01

    ABSTRACT: Our focus in this proposal is to perform basic research to create bio-inspired 3-D morphing mechanical structures which are a gateway technology to enable true 3-D morphing flight. Prioria and Virginia Tech University will team to perform basic research into bio-inspired structure such as artificial bones/wings/feathers and artificial muscles. Prioria will establish technical feasibility ...

    STTR Phase I 2016 Department of DefenseAir Force
  10. Robust Mid-IR Optical Fibers for Extreme Environments

    SBC: Lambda Photonics, LLC            Topic: AF15AT02

    ABSTRACT: Infrared sources and sensors are becoming increasingly useful for military and commercial applications. We propose to exploit recent advances in multimaterial fiber technology to produce a new class of optical infrared fibers that are robust and low in cost for high-power, high-stress environments. The use of beam confining fiber optics reduces or eliminates issues with misalignment or d ...

    STTR Phase I 2016 Department of DefenseAir Force
US Flag An Official Website of the United States Government