You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Self-Healing, Reinforced, Multifunctional Composite Material

    SBC: PHYSICAL SCIENCES INC.            Topic: A09AT023

    Physical Sciences Inc. and the University of Delaware propose a novel self-healing, damage-sensing, reinforced polymer composite concept for use in degradation-resistant structural applications. In Phase I we investigated the feasibility of a microcapsule-based self-healing system and a damage-sensing functionality. The objective of Phase II is to develop a reinforced composite material that incor ...

    STTR Phase II 2010 Department of DefenseArmy
  2. Eye-safe Optically-Pumped Gas-filled Fiber Lasers

    SBC: Precision Photonics Corporation            Topic: ARMY08T021

    An eye-safe optically pumped laser based on a gas-filled hollow optical fiber will be demonstrated to lase at both near infrared (IR) and mid IR wavelengths. These lasers will be the first in a new class of IR lasers, based on the combination of hollow-f

    STTR Phase II 2010 Department of DefenseArmy
  3. BRDF Analysis of LADAR-based Target Surface Characterization

    SBC: SPECTRAL SCIENCES INC            Topic: A10AT006

    LADAR light reflection from a target is highly dependent of the spectral reflectivity and texture properties of the surface. Such dependencies could be exploited for target recognition based on surface characterization with appropriate imaging conditions and processing algorithms. Target surface light reflection is characterized by the Bidirectional Reflectance Distribution Function (BRDF), which ...

    STTR Phase I 2010 Department of DefenseArmy
  4. Sulfur and Carbon Tolerant Logistic Fuel Reformer

    SBC: ASPEN PRODUCTS GROUP INC            Topic: A09AT018

    Development of a novel logistic fuel reformer that has excellent tolerance to sulfur and is resistant to coke formation is proposed. The reformer will produce a hydrogen-rich product that contains less than 1 ppm sulfur and is suitable for use with solid oxide fuel cells. Significant improvements in power density, startup time, durability, and cost relative to state of the art logistic fuel refo ...

    STTR Phase I 2010 Department of DefenseArmy
  5. Portable Microfluidic Three Component Blood Separator

    SBC: Infoscitex Corporation            Topic: A10AT026

    Infoscitex and Columbia University propose to develop an automated blood component separation system that can quickly and automatically separate blood into three components for the US Army to use under field conditions. In this Phase I program, the team will prove the feasibility of separating whole blood into RBC, platelet rich plasma and acellular plasma using a high volume microfluidic technolo ...

    STTR Phase I 2010 Department of DefenseArmy
  6. Narrowband Microbolometer Infrared Detectors for Chemical and Biological Sensing

    SBC: Infoscitex Corporation            Topic: A10AT023

    A narrow-band microbolometric detector is proposed to the address need for a low-cost, portable system to perform chemical and biological threat detection. An approach is shown to achieve a narrow-band bolometric detector whose response can be tailored to both a desired peak wavelength and bandwidth. The approach will enable the design of an array of detectors meeting the requirements for chemical ...

    STTR Phase I 2010 Department of DefenseArmy
  7. Plasmonic MEMS Sensor Array

    SBC: Five Stones Research Corporation            Topic: A10AT002

    Sensor development researchers and engineers have perpetually sought novel methods to reduce sensor size and improve performance. Continued miniaturization of sensors through micromachining has enabled novel applications and introduced new paradigms for engineered systems to interact with the world. The challenge has always been to improve performance while continually reducing size. In the cur ...

    STTR Phase I 2010 Department of DefenseArmy
  8. Eye-safe Optically-Pumped Gas-filled Fiber Lasers

    SBC: Precision Photonics Corporation            Topic: A08T021

    An eye-safe optically pumped laser based on a gas-filled hollow optical fiber will be demonstrated to lase at both near infrared (IR) and mid IR wavelengths. These lasers will be the first in a new class of IR lasers, based on the combination of hollow-f

    STTR Phase II 2010 Department of DefenseArmy
  9. Dilution refrigerator technology for scalable quantum computing

    SBC: High Precision Devices, Inc.            Topic: A08T020

    Currently large capacity cryostats, capable of hosting experiments for many qubits, require expensive and hard to obtain liquid cryogens. A few small cryo-free systems exist but they are non-ideal for this use. An opportunity exists for a large scale, c

    STTR Phase II 2010 Department of DefenseArmy
  10. CMR Oxides Based Microbolometer Focal Plane Array with Reduced 1/f Noise

    SBC: AGILTRON, INC.            Topic: A09AT014

    We propose to realize a new class of microbolometer FPA technology with significantly reduced 1/f noise by replacing the sensing material (e.g. VOx) with colossal magnetoresistive (CMR) oxides. The program uniquely combines Agiltron’s experience in novel IR imager development and leading academic research on CMR at Los Alamos National Lab (LANL). The LANL Team has developed breakthrough proce ...

    STTR Phase II 2010 Department of DefenseArmy
US Flag An Official Website of the United States Government