You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Miniature Electronic DFI for 5-20 Hp HFE

    SBC: JM HARWOOD, LLC            Topic: N10AT033

    JM Harwood, LLC, and UAH Propulsion Research Center propose the development of an electronic miniature Direct Fuel Injection (DFI) system for 5-20 hp heavy fuel engines. This highly integrated Very Small Injection Technology (V-SInTech) DFI system will be capable of (a) multiple injections per cycle, (b) variable injection timing, (c) variable spray penetration depth, (d) real-time closed loop mod ...

    STTR Phase I 2010 Department of DefenseNavy
  2. High Efficiency Gain Media for Eye-Safer 1.55 µm Ultrafast Fiber Amplifiers

    SBC: Kapteyn-Murnane Laboratories, Inc.            Topic: N10AT012

    We propose to design a high average power Er:Fiber ultrafast laser system which is pumped at 14xxnm, and at the same time solve other problems related to ultrashort pulses in fiber lasers. The advantage of using 14xxnm pumping is the reduction of the standard quantum defect from 37% to 5%, thus greatly reducing the thermal load on the system, which makes it inherently more efficient. We also inten ...

    STTR Phase I 2010 Department of DefenseNavy
  3. A Fast-Response, Electronically Controlled Fuel Injection System for Small Heavy Fuel Engines with Multi-Fuel Capabilities

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N10AT033

    Advances in electronically controlled injection technologies for diesel engines have provided a method to improve medium- to heavy-duty engine performance through increased injection pressures, multiple injections, and injection rate shaping. Although these injection systems have been primarily limited to larger engines, the ability to rapidly and precisely meter fuel for smaller engines is partic ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Refractory Metal Coating for Electromagnetic Launcher Rails

    SBC: TDA RESEARCH, INC.            Topic: N10AT025

    Electromagnetic launchers or rail guns are a key component of the Navy’s all-electric ship of the future, but they lack the durability required for repeated firings. TDA Research and the University of Nevada, Reno (UNR) are developing a tough, durable and conductive refractory metal coating that will protect the copper alloy conductors (rails) from the extreme heat and wear conditions inside the ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Complex Event Detection in Video and Communications

    SBC: SOAR TECHNOLOGY INC            Topic: N10AT040

    We will demonstrate the feasibility of detecting tactically meaningful complex events in sensor input streams using an efficient pattern matching technology embodied in the Soar cognitive architecture. Our focus in Phase I will be on video streams, such as those that might be produced by unattended ground sensors or unmanned aerial systems. To reduce risk, we propose devoting a portion of our effo ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Development of Surface Reaction Mechanism for C-SiC-SiO2-Rubber Composite Oxidation in Extreme Oxidizing Condition

    SBC: CFD RESEARCH CORPORATION            Topic: N10AT005

    The purpose of this STTR is to develop comprehensive detailed kinetics for oxidation of C-SiC-SiO2-rubber in extreme oxidizing environment. This material is used as a coating on the outer surface of Navy weapon systems. In order to predict the fate of this material under extreme conditions and mitigate the degradation of the coating, a comprehensive oxidation mechanism is required. In Phase I, CFD ...

    STTR Phase I 2010 Department of DefenseNavy
  7. An adaptive and scalable SOA-based network resource virtualization framework for MANET

    SBC: Intelligent Automation, Inc.            Topic: N10AT006

    The key innovation of this proposal is to develop an adaptive and scalable network resource virtualization framework. The framework employs simple yet efficient mechanisms to deliver a comprehensive network resource virtualization solution through network virtualization, service discovery/advertisement, and service differentiation in mobile ad hoc networks (MANETs). It uses local caching to facili ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: BUSA Engineering Consulting            Topic: N10AT002

    This proposal is being submitted in response to the solicitation topic N10A-T002 (Development of a Computational Method for Prediction of After Burning Effect) by BUSA Engineering Consulting (Dr. Jianghui Chao) in collaboration with University of Florida (PI: Prof. S. Balachandar). The overall objective of the proposed effort is to contribute to national defense and security by advancing the state ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Demonstration of a JP-8 Powered Compact ECU

    SBC: MAINSTREAM ENGINEERING CORP            Topic: OSD09T002

    Military shelters currently use electrically driven Environmental Control Units (ECUs) to provide cooling for the air inside the shelter. The ECU is vapor compression cycle powered by a diesel generator, operating on JP-8 fuel. Other than fueling jet engines, the largest drain on U.S. military fuel supplies in current operations comes from running generators at forward operating bases. In hot cli ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government