You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Tools for Modeling & Simulation of Molecular and Nanomaterials for Optically Responsive Devices

    SBC: UES INC            Topic: AF09BT30

    Military applications for CBRNE/GWTO and C4ISR require R&D for materials to protect personnel and equipment. However, challenges remain in experimental synthesis and characterization of new materials, such as providing insight into observed properties for further advancement. Thus, it is essential to develop a predictive modeling and simulation approach that will not only provide a fundamental u ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Thermoelectric material-coated carbon nanotubes as high conductivity thermal interface materials

    SBC: ADA TECHNOLOGIES, INC.            Topic: AF09BT22

    The ever-decreasing size of the electronic microchips and the ever-increasing density of electronic components required to support future Air Force platforms are creating the problem of substantial localized heat generation that can impair component operation. State of the art thermal interface materials (TIMs), that are used to dissipate heat from the source to the spreader in a microchip, are se ...

    STTR Phase I 2010 Department of DefenseAir Force
  3. Science and Applications of Metameterials to Interceptor Sensors

    SBC: PHOEBUS OPTOELECTRONICS LLC            Topic: MDA08T009

    The proposed project will develop three actively configurable metamaterial of relevance to both i) MDA’s high-priority and near-term need for stray light testing and diagnosis and ii) the interceptor functions of THAAD, Ascent Phase Interceptors, MKV and Space Systems. Phoebus’s configurable metamaterials aperture arrays will consist of single-layer metallic thin films patterned with light-cha ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  4. Graded-Composition Refractory Coatings for Protection of Cu-Rails for Electromagnetic Launchers

    SBC: Engineered Coatings, Inc.            Topic: N10AT025

    The Navy is developing an electromagnetic (EM) launcher for long-range naval surface-fire-support. Severe operating conditions of the EM system place stringent requirements for materials, including high current and magnetic fields, high temperatures, contact with liquid metals, high stress/gouging from balloting contacts and high-speed-sliding electrical-contact with an Al armature. Engineered Coa ...

    STTR Phase I 2010 Department of DefenseNavy
  5. An Advanced Undersea Lithium Ion Management System (U-LIMS)

    SBC: Impact Technologies            Topic: N10AT013

    Impact Technologies, in collaboration with Penn State Applied Research Laboratory, proposes to develop an advanced Battery Monitoring and Management System (BMMS) for lithium-ion battery packs that ensures adequate, safe, and reliable operation. This system will focus on real time diagnostics, prediction of catastrophic failure, and risk assessment for individual cells in high power applications. ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Magnetostrictive Vibration Energy Harvester (MAVEN)

    SBC: Impact Technologies            Topic: N10AT020

    Impact Technologies, in cooperation with Dr. Mohammed Daqaq from Clemson University, propose to develop a magnetostrictive materials based device for harvesting energy from mechanical vibration. The energy harvesting device will harness power from ship-hull vibrations in order to power sensing devices. This technology will be a key enabler for improved structural and machinery health management. K ...

    STTR Phase I 2010 Department of DefenseNavy
  7. Advanced Software Tools for Lithium Ion Battery Risk Assessment (LIBRA)

    SBC: Impact Technologies            Topic: N10AT014

    Impact Technologies, in collaboration with the Georgia Tech Center for Innovative Fuel Cell and Battery Technologies, proposes to develop tools for Lithium Ion Battery Risk Assessment (LIBRA). These tools will allow the Navy to analyze proposed Li-Ion battery designs and assess the overall risk to the platform in the event of failure in a single cell. The tool will also predict the effects of a ca ...

    STTR Phase I 2010 Department of DefenseNavy
  8. High Efficiency Gain Media for Eye-Safer 1.55 µm Ultrafast Fiber Amplifiers

    SBC: Kapteyn-Murnane Laboratories, Inc.            Topic: N10AT012

    We propose to design a high average power Er:Fiber ultrafast laser system which is pumped at 14xxnm, and at the same time solve other problems related to ultrashort pulses in fiber lasers. The advantage of using 14xxnm pumping is the reduction of the standard quantum defect from 37% to 5%, thus greatly reducing the thermal load on the system, which makes it inherently more efficient. We also inten ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Low-Cost Ball/Air/Magnetic Hybrid Bearing System for Extended-Life Micro Gas Turbine Engines

    SBC: Nastec, Inc.            Topic: N10AT037

    A unique type of air lubricated thrust bearing called a Wave Bearing is proposed to assist a rolling element bearing to carry the thrust load and to improve the bearing’s life when used in a micro gas turbine engine. The Wave Bearing technology will provide improved reliability, safety and life compared to rolling element bearings used alone, as well as to allow simplification of engine design a ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Probabilistic Prediction of Location-Specific Microstructure in Turbine Disks

    SBC: SCIENTIFIC FORMING TECHNOLOGIES CORPORATION            Topic: N10AT028

    While there are established methods available in determining the fatigue life of critical rotating components, there is still room for improvement for better understanding and prediction of life limiting factors. Improved risk assessment of jet engine disk components would require probabilistic modeling capability of the evolution of microstructural features, residual stresses and material anomali ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government