You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Narrowband microbolometer arrays for infrared chemical sensing

    SBC: ITN ENERGY SYSTEMS, INC.            Topic: A10AT023

    This Small Business Technology Transfer Research program will develop narrow band plasmonic resonant cavity filters with integrated microbolometer sensors operating in the long wave infrared (LWIR) atmospheric transmission band for IR absorption measurements of low concentration chemicals. IR spectroscopy can identify a wide range of contaminants, including chemical/biological warfare agents, exp ...

    STTR Phase I 2010 Department of DefenseArmy
  2. DIPAIN based assay for the T-2 Toxin

    SBC: L. C. PEGASUS CORP.            Topic: A10AT021

    This proposed project is to develop a rapid assay for T-2 Toxin. Under this project we will develop DIPAIN-derivative based test-strips that indicate the presence of trace quantities of trichothecene mycotoxins in aqueous solutions. The T-2 toxin will be used as a test case for this effort. We will use of 2-(diphenylacetyl)-l,3-indanedione-l-hydrazone (DIPAIN II) and its derivatives as reagents o ...

    STTR Phase I 2010 Department of DefenseArmy
  3. Thermoelectric material-coated carbon nanotubes as high conductivity thermal interface materials

    SBC: ADA TECHNOLOGIES, INC.            Topic: AF09BT22

    The ever-decreasing size of the electronic microchips and the ever-increasing density of electronic components required to support future Air Force platforms are creating the problem of substantial localized heat generation that can impair component operation. State of the art thermal interface materials (TIMs), that are used to dissipate heat from the source to the spreader in a microchip, are se ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Innovative CFD Algorithm, Libraries & Python Frameworks for Hybrid-GPU Computing Architectures

    SBC: JMSI, INC            Topic: AF09BT18

    The need for faster highly resolved solutions coupled with the advent of General Purpose Graphics Processing Unit (GPGPU) architectures and the development of GPGPU algorithms at the University of California, Davis present an opportunity that JMSI Inc. proposes to leverage by developing algorithmic and software solutions for GPGPUs in “Innovative CFD Algorithms, Libraries & Python Frameworks for ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Fast, High-Order algorithms for Many-Core and GPU-based Computer Architectures

    SBC: MATHEMATICAL SYSTEMS & SOLUTIONS, INC.            Topic: AF09BT18

    We propose algorithm development and efficient GPU implementation of numerical PDE solvers based on four novel high-order methodologies: 1) High-order Discontinuous Galerkin approaches, 2) Fast High-Order boundary integral methods, 3) Convergent FFT-based methodologies for evaluation of computational boundary conditions, and 4) Fourier Continuation methods. These methodologies are applicable to a ...

    STTR Phase I 2010 Department of DefenseAir Force
  6. Coupled Cluster Methods for Multi-Reference Applications

    SBC: ACES QC, LC            Topic: AF09BT40

    The objective of Phase I is to identify the strengths and weaknesses of the various multi-reference coupled-cluster (MRCC) methods that have been proposed for the description of molecular states depending upon near degeneracies and non-dynamic electron correlation. Such effects are encountered in bond breaking, at transition states, for complex open shell systems like transition metal atoms, and f ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. Theoretical Innovations in Combustion Stability Research: Integrated Analysis and Computation

    SBC: Kassoy Innovative Science Solutions            Topic: AF09BT38

    Quantitative predictions of reactive flow dynamics from large-scale simulations of Liquid Rocket Engines (LRE) appear to be model dependent. Relationships and coupling among the dominant mechanisms most responsible for destabilization are obscured by the complexities of the model and subtle consequences of inherent ad hoc approximations not supported by mathematical rationale. The reliability of ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. Fusion of a Real-time Analytical Model with Facility Control Systems

    SBC: STREAMLINE AUTOMATION LLC            Topic: AF09BT16

    AEDC personnel have developed and demonstrated the effectiveness of coupling a control volume model with a wind tunnel control system. The performance of the model was hampered because parameters of the model were assumed to be constant, when they are likely variables. A method for using facility data to determine functional relationships defining these parameters would allow them to vary during ...

    STTR Phase I 2010 Department of DefenseAir Force
  9. Adaptive Turbine Engine Control for Stall Threat Identification and Avoidance

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: N10AT008

    Aurora Flight Sciences and MIT propose to develop a model-based adaptive health estimation and real-time proactive control to identify gas turbine engine stability risks and avoid them through control action. In this concept, the engine control system actively monitors sensors and actuators, compares them against physical models, and infers which components may be performing poorly and may need to ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Development of Surface Reaction Mechanism for C-SiC-SiO2-Rubber Composite Oxidation in Extreme Oxidizing Condition

    SBC: CFD RESEARCH CORPORATION            Topic: N10AT005

    The purpose of this STTR is to develop comprehensive detailed kinetics for oxidation of C-SiC-SiO2-rubber in extreme oxidizing environment. This material is used as a coating on the outer surface of Navy weapon systems. In order to predict the fate of this material under extreme conditions and mitigate the degradation of the coating, a comprehensive oxidation mechanism is required. In Phase I, CFD ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government