You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Laser Induced Surface Improvement for Superior Wear Resistance in Extreme Conditions

    SBC: CFD RESEARCH CORPORATION            Topic: AF09BT19

    The objective of this Phase I project is to evaluate the use of novel Laser Induced Surface Improvement (LISI) techniques to provide surface modification to substrate materials which will provide superior wear resistance in extreme conditions. The specific application of interest is the hypersonic metal-to-metal contact that occurs at high speed test track facilities that can and has lead to catas ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Dynamic Physical/Data-Driven Models for System-Level Prognostics and Health Management

    SBC: GLOBAL STRATEGIC SOLUTIONS LLC            Topic: N10AT009

    Prognostics and health management (PHM) systems are critical for detecting impending faults and enabling a proactive decision process for maintenance or replacement of avionics systems before actual failures occur. A PHM system is essential to enhancing aircraft systems reliability and maintaining a high level of mission readiness and affordability. Current PHM advancements are focused on aircraft ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Surface plasmon enhanced tunneling diode detection of THz radiation

    SBC: ITN ENERGY SYSTEMS, INC.            Topic: AF09BT33

    This Small Business Technology Transfer Research phase I program will develop a new class of uncooled THz detectors for the 1-10THz band with a novel design using surface plasmon resonant cavities with integrated metal-insulator-metal tunneling diodes as the detecting element. Tunneling diodes provide ultrafast broadband response, potentially into the visible (300THz), but demonstrated performanc ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: Strategic Insight, Ltd.            Topic: N10AT002

    The research objective is to develop a fully functional computational method for prediction of the after-burning effect of different fuels in a wide range of temperature, pressure, and turbulence regimes. Achievement of the objective requires understanding and modeling of key phenomena including (a) post-detonation response of the fuels, (b) near-field coupling of detonation products with particul ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Simulation Tool for Modeling Weakly Ionized Plasma

    SBC: TECH-X CORPORATION            Topic: AF09BT10

    We propose to develop a commercial weakly ionized plasma modeling capability based off of Tech-X’s high energy density plasma fluid code TxFluids. The new additions will be able to be used to model hypersonic vehicle physics including shock waves, plasma chemistry and innovative techniques for blackout mitigation and hypersonic vehicle control through the application of electric and/or magnetic ...

    STTR Phase I 2010 Department of DefenseAir Force
  6. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: BUSA Engineering Consulting            Topic: N10AT002

    This proposal is being submitted in response to the solicitation topic N10A-T002 (Development of a Computational Method for Prediction of After Burning Effect) by BUSA Engineering Consulting (Dr. Jianghui Chao) in collaboration with University of Florida (PI: Prof. S. Balachandar). The overall objective of the proposed effort is to contribute to national defense and security by advancing the state ...

    STTR Phase I 2010 Department of DefenseNavy
  7. UAV Guidance on GPUs by Nominal Belief-State Optimization

    SBC: Apolent Corporation            Topic: AF09BT06

    We apply the theory of partially observable Markov decision processes (POMDPs) to the design of guidance algorithms for controlling the motion of unmanned aerial vehicles (UAVs) with on-board sensors for tracking multiple ground targets. While POMDPs are intractable to optimize exactly, principled approximation methods can be devised based on Bellman’s principle. We introduce a new approximation ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Adaptive Learning for Stall Pre-cursor Identification and General Impending Failure Prediction

    SBC: FRONTIER TECHNOLOGY INC.            Topic: N10AT008

    Frontier Technology, Inc. (FTI) and Northeastern University propose to investigate and develop an innovative approach to predict stall events of aircraft engines prior to occurrence and in sufficient time to allow the FADEC controller to adjust engine variables. The team will utilize vector quantization and neural network techniques to develop accurate models of engine behavior that will be used t ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Advanced Computational Methods for Study of Electromagnetic Compatibility

    SBC: MATHEMATICAL SYSTEMS & SOLUTIONS, INC.            Topic: AF09BT13

    The present text proposes development of efficient, accurate and rapidly-convergent algorithms for the simulation of propagation and scattering of electromagnetic fields within and around structures that (i) Consist of complex combinations of penetrable materials as well as perfect and imperfect conductors, and, (ii) Possess complex geometrical characteristics, including open surfaces, metallic c ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government