You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Blended Reality Solution for Live, Virtual, and Constructive Field Training

    SBC: SA PHOTONICS, LLC            Topic: AF17AT011

    A Battlefield Airman (BA) has one of the most challenging positions in the military. BA personnel are tasked with the dual roles of being warfighters as well as Combat Controllers, Pararescuemen, Tactical Air Control Party (TACP) members and Special Operations Weather Technicians often while behind enemy lines. These complex duties require high fidelity training. In some cases, such as Pararescuem ...

    STTR Phase II 2018 Department of DefenseAir Force
  2. Broad Spectrum Optical Property Characterization

    SBC: SPECTRAL MOLECULAR IMAGING, INC.            Topic: AF15AT12

    Liquid Crystal Arrayed Microcavities (LCAM) are a new hyperspectral technology initiated by collaboration among Spectral Molecular Imaging, Advanced Microcavity Sensors and Montana State University Spectrum Laboratory.At the core of this revolutionary technology lie picoliter volume optical cavities that exploit liquid crystal birefringence for tuning an effective cavity length.During a Phase I on ...

    STTR Phase II 2016 Department of DefenseAir Force
  3. DREAMIT- Design, Reconfigure and Evaluate Autonomous Models in Training

    SBC: TIER 1 PERFORMANCE SOLUTIONS LLC            Topic: AF15AT14

    Our Phase I work focused on improving modeling and simulations so that the impact of autonomous systems in the battlespace could be better understood. As we have trained our attention on Phase II, it has become increasingly clear that the work we are doing to improve the modeling and simulation of autonomous systems also provides significant leverage for the development of the intelligent behavior ...

    STTR Phase II 2016 Department of DefenseAir Force
  4. High Speed Electronic Device Simulator

    SBC: TECH-X CORPORATION            Topic: AF15AT33

    The overall project objective is to develop and demonstrate a software package based on Fermi kinetics charge transport and Delaunay/Voronoi field discretization that accurately predicts semiconductor device behavior from DC up through the mm-wave and TH...

    STTR Phase II 2016 Department of DefenseAir Force
  5. Impact of Hypersonic Flight Environment on Electro-Optic/Infrared (EO/IR) Sensors

    SBC: Analysis and Applications Associates, Inc.            Topic: AF15AT40

    EO/IR sensors can provide high spatial resolution images using multiple frequency bands ranging from the visible to mid-wave IR. EO/IR sensors have been very successful for terrain imaging from subsonic aircraft and from satellites. Imaging using these platforms has been studied extensively. EO/IR sensors can provide high spatial resolution images using multiple frequency bands ranging from the v ...

    STTR Phase II 2016 Department of DefenseAir Force
  6. EX-SCAN: Autonomous Inspection System for Aircraft Surface Coatings

    SBC: Intelligent Automation, Inc.            Topic: AF14AT09

    Current methods for inspecting the external surfaces of low-observable (LO) aircraft are time consuming and error prone. Technology that can reduce inspection times and minimize human error will benefit the Air Force by increasing assessment reliability and aircraft availability while reducing maintenance costs. To address this need, Intelligent Automation (IAI) and Carnegie Mellon University (CMU ...

    STTR Phase II 2016 Department of DefenseAir Force
  7. Three-Dimensional Density Imaging by Rayleigh Scattering

    SBC: METROLASER, INCORPORATED            Topic: AF16AT06

    A diagnostic is proposed for obtaining instantaneous three-dimensional volumetric distributions of density in a flow field at velocities ranging from subsonic to supersonic. Multiple Sheet Filtered Rayleigh Scattering (MSFRS) will be developed, which enables a series of two-dimensional images to be rapidly obtained making up a volumetric image while suppressing background scattering from wind tunn ...

    STTR Phase II 2018 Department of DefenseAir Force
  8. Target Tracking via Deep Learning

    SBC: Systems & Technology Research LLC            Topic: AF17AT027

    To address the challenge of long-term tracking, through extended occlusions and significant appearance changes, we propose to continue developing DC-CAT, a Deep Convolutional neural network (CNN) based Confuser-Aware high value target (HVT) Tracker.The DC-CAT system combines a state-of-the-art CNN-based adaptive HVT tracker with a CNN-based pre-trained generic target detector, in a deep-feature-ai ...

    STTR Phase II 2018 Department of DefenseAir Force
  9. Compact CMOS-Compatible Optical Transceiver

    SBC: PHYSICAL SCIENCES INC.            Topic: AF14AT13

    Physical Sciences Inc. (PSI) and the research group of Professor Richard Osgood at Columbia University propose to develop a compact optical transceiver based on devices fabricated on a complementary metal-oxide semiconductor (CMOS) platform. The recent development of novel integrated structures in silicon including waveguides, resonators, and photodetectors will enable dramatic reductions in size, ...

    STTR Phase II 2016 Department of DefenseAir Force
  10. High speed, multispectral, linear polarization display

    SBC: POLARIS SENSOR TECHNOLOGIES INC            Topic: AF17AT021

    To understand how insects and crustaceans sense and process light fields, researchers need a projection system that provides realistic wide field of view (FOV), high-speed imagery from UV to red (320-650nm) that includes polarization control. Insects and crustaceans have vastly different visual acuity and wavelength response from humans. In addition, some can sense polarization. Therefore, commerc ...

    STTR Phase II 2018 Department of DefenseAir Force
US Flag An Official Website of the United States Government