You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Refractory Metal Coating for Electromagnetic Launcher Rails

    SBC: TDA RESEARCH, INC.            Topic: N10AT025

    Electromagnetic launchers or rail guns are a key component of the Navy’s all-electric ship of the future, but they lack the durability required for repeated firings. TDA Research and the University of Nevada, Reno (UNR) are developing a tough, durable and conductive refractory metal coating that will protect the copper alloy conductors (rails) from the extreme heat and wear conditions inside the ...

    STTR Phase I 2010 Department of DefenseNavy
  2. iDiver: Underwater Text Messaging and Locating System for Divers

    SBC: SCIENTIFIC SYSTEMS CO INC            Topic: N10AT034

    Diver communication is vital for the US Navy while carrying out strategic underwater missions. Diver-to-diver communication and diver-to-vehicle communication can allow the sharing of information as it is discovered and also enable performing cooperative maneuvers. Emergency situations can also benefit from such communication. In addition to the communication capability, it would be useful to know ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Autonomous Landing at Unprepared Sites for a Cargo Unmanned Air System

    SBC: SCIENTIFIC SYSTEMS CO INC            Topic: N10AT039

    Scientific Systems and Brigham Young University will develop and test an autonomous helicopter landing system using vision-based navigation and control.

    STTR Phase I 2010 Department of DefenseNavy
  4. Buoyant Active Sensor System (BASS) for Riverine Mapping

    SBC: SCIENTIFIC SYSTEMS CO INC            Topic: N10AT024

    There is need for fast, easy-to-operate, and low-risk methods for mapping geography, velocity, and bathymetry of rivers. River charts can be nonexistent or inadequate because of changes in water volume, tides, sediment transport, flooding, and other events. This is a hindrance and a hazard for navigation and other operations. Currently, procedures to map rivers involve navigating surface vessels i ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Structurally Integrated Wideband Low Profile Metamaterial Antenna (1000-161)

    SBC: SI2 TECHNOLOGIES, INC            Topic: N10AT021

    SI2 Technologies, Inc. (SI2) proposes an innovative solution to the Navy’s need for wideband antennas to support naval ships and Marine Corps’ vehicle communications, electronic warfare (EW), and radar functions. SI2 will develop efficient, broadband, metamaterial antennas for operation in the VHF-UHF frequency range. These antennas will initially be designed for integration with the composite ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Development of Magnetostrictive Energy Harvesting of Mechanical Vibration Energy

    SBC: Infoscitex Corporation            Topic: N10AT020

    The Navy seeks devices that can provide power to maintain charge in batteries for shipboard sensors. The transduction materials proposed for most energy harvesting devices under development are either too brittle to endure significant loading or are too compliant to extract significant energy from the small amplitude vibrations present on ships. Terfenol-D (in a composite form) and Galfenol each p ...

    STTR Phase I 2010 Department of DefenseNavy
  7. High Energy Density Hydrogen Delivery System

    SBC: GINER INC            Topic: N10AT030

    This NAVY Small Business Technology Transfer project is directed toward the development of a novel hydrogen generator that employs nanostructured metal foam catalysts. Special coating and form factor will also be employed to the hydrogen generating materials to ensure the safety of storage and transportation, while maintaining very high packing density compared with conventional powder packing.

    STTR Phase I 2010 Department of DefenseNavy
  8. Mitigation of USV Motions via Wave Sensing and Prediction

    SBC: VECTOR CONTROLS, INC.            Topic: N10AT036

    A boat’s coxswain is adept at analyzing the wave environment, adjusting the craft’s propulsion system and control surfaces to mitigate its motions and reduce the chance of capsizing. There is a significant predictive component in the coxswain’s control decisions. Unmanned surface vehicles (USVs) lack the benefit of a highly trained coxswain reading and predicting oncoming waves - existing au ...

    STTR Phase I 2010 Department of DefenseNavy
  9. A Rugged and Miniaturized Optical Coagulation Monitor

    SBC: SPECTRAL SCIENCES, INC            Topic: N10AT043

    A team consisting of Spectral Sciences Inc., Boston University, Boston University Medical School, Radcliffe Consulting and Brighton Consulting will collaborate to develop and validate a novel optical device for the monitoring and evaluation of blood coagulation. In this proposal we describe a novel optical blood coagulation monitoring instrument. The instrument has no moving parts, uses very small ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Impedance-based Sensing Optimization & Algorithms for Visualization of Ship Hull Structural Health Monitoring Data

    SBC: METIS DESIGN CORPORATION            Topic: N10AT042

    The implementation of structural health monitoring (SHM) systems into naval applications has been hindered due to component quantity, including sensors, power/communication cables, and acquisition/computation units, as well as data quality. Particularly for large-area applications such ship hulls, complexity of implied system infrastructure can be impractical, and data can be worthless with attenu ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government