You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Advanced Ship-handling Simulators

    SBC: D'Angelo Technologies, LLC            Topic: N18AT014

    There is a need to create an automated, adaptive, real time coaching module that can integrate the Conning Officer Virtual Environment (COVE) along with the associated Intelligent Tutor System (COVE-ITS) and the Conning-Officer Ship Handling Assessment (COSA) together. By automating the evaluation process, Surface Warfare Officers (SWOs) will have the opportunity to use the COVE simulations more f ...

    STTR Phase I 2018 Department of DefenseNavy
  2. Seamless Wireless Charging of Micro and Small Unmanned Aerial System Through Local Power Transmission Infrastructure

    SBC: EH GROUP INC            Topic: N19AT019

    Wireless charging of unmanned aerial system (UAS) platforms from the environment has the potential to greatly increase flight and mission times. A promising option is to use electromagnetic fields from the power transmission infrastructure as an energy source. EH Group and the University of Alabama propose a design for UAS wireless charging in the near-field environment of the commercial power tra ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Data Analytics and Machine Learning Toolkit to Accelerate Materials Design and Processing Development

    SBC: CFD RESEARCH CORPORATION            Topic: N19AT020

    Navy has identified refractory high entropy alloy (RHEA) and metal additive manufacturing as two potential areas of interest. This includes designing new RHEA and optimizing metal additive manufacturing with specific material property requirements. Developing materials and processes via applying traditional experimentation and process optimization techniques is painfully slow due to the large numb ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Integrated photonic Raman sensor on a chip

    SBC: PARTOW TECHNOLOGIES LLC            Topic: N19AT023

    A photonic integrated spectrometer based on high-index contrast thin film platform is proposed for Raman signal processing. Raman signal generation on the chip via waveguide collection integrated with a spectrometer is proposed to increase the efficiency and signal to noise ratio and significantly reduce cost and the size of Raman sensor systems. All components of the proposed Raman detection syst ...

    STTR Phase I 2019 Department of DefenseNavy
  5. Compact and Low-cost High Performance Spectrometer Sensor based on Integrated Photonics Technology

    SBC: ULTRA-LOW LOSS TECHNOLOGIES LLC            Topic: N19AT023

    Ultra-Low Loss Technologies (ULL Technologies) is proposing in collaboration with Prof. Arka Majumdar from University of Washington (UW), to develop a compact, low-cost spectrometer module to be used for chemical sensing applications and to be fabricated using the process design kit (PDK) available through AIM Photonics multi-project wafer run (MPW). The team will combine ULL Technologies expertis ...

    STTR Phase I 2019 Department of DefenseNavy
  6. Multi-lingual Social-media Crowd Manipulation Detector (MSCMD)

    SBC: BCL Technologies            Topic: N19AT024

    In this SBIR, BCL proposes developing a Multi-lingual Social-media Crowd Manipulation Detector (MSCMD). The MSCMD will use natural language processing techniques to detect terms that arouse emotion using information out of context to trigger reaction from the audience and move them to act.The MSCMD will operate in Asian languages using a Natural Language Processor for each language. The MSCMD will ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Predictive Graph Convolutional Networks

    SBC: ARETE ASSOCIATES            Topic: N19AT017

    The US Navy’s mission to maintain, train and equip combat-ready Naval forces requires that decision makers have situational awareness of the capabilities, limitations, vulnerabilities/opportunities for adversarial and allied forces. An incomplete or inaccurate understanding of the current landscape and associated trends could lead to suboptimal mission readiness and outcomes. Analysts need tools ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Innovations in Designing Damage Tolerant Rotorcraft Components by Interface Tailoring

    SBC: HARP ENGINEERING LLC            Topic: N19AT003

    The performance of a composite material is heavily influenced by the strength and toughness of the interlaminar region, which is the resin rich area between the plies of a fiber reinforced composite. The interlaminar region generally provides a direct path for crack propagation since no continuous reinforcement is present and is often the cause of failure in materials subjected to cyclic loading s ...

    STTR Phase I 2019 Department of DefenseNavy
  9. Power Dense Turbo-Compression Cooling Driven by Waste Heat

    SBC: MANTEL TECHNOLOGIES, INC.            Topic: N19AT013

    The U.S. Navy seeks methods to improve the fuel economy of marine diesel engines through utilization of waste heat. Low temperature engine jacket water, lubrication oil, and aftercooler air are largely untapped streams of thermal energy on these ships, but their utilization circumvents many operation challenges associated with exhaust gases. For example, variable and high exhaust gas temperatures ...

    STTR Phase I 2019 Department of DefenseNavy
  10. High Speed Spinning Scroll Expander (HiSSSE)- Organic Rankine Cycle for Increased Naval Ship Power Density and Fuel Efficiency

    SBC: Air Squared, Inc.            Topic: N19AT013

    Waste heat from Naval diesel generators provides significant opportunity to introduce organic Rankine cycles (ORC) to increase their fuel efficiency. The objective of the proposed effort is to design and demonstrate a high-speed, spinning scroll expander (HiSSSE) ORC as a power dense waste heat recovery system for diesel generators on ships. The system will leverage Air Squared’s spinning scroll ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government