You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Conformal Li Metal Batteries Enabled By Microporous Electrodes

    SBC: Navitas Advanced Solutions Group, LLC            Topic: A18BT015

    Navitas will collaborate with the University of Maryland group to develop a flexible microporous Li metal anode. The proposed porous anode will reduce Li dendrite growth via its built-in porosity and increase rate capability via its high surface area. It will enable a conformal, safe, and light weight lithium metal batteries as soldier portable power devices. The Phase I project will demonstrate t ...

    STTR Phase I 2019 Department of DefenseArmy
  2. BioSENSE, for identification of allosteric transcription factor biosensors

    SBC: SYNVITROBIO, INC.            Topic: A18BT016

    There is a need to develop affordable and specific biosensors to defend against current and future biological threats. Biological methods of detection have been evolved by nature to detect molecules at the micro-scale with flexible specificity and with downstream effectors. Advances in cell-free technology allow for deployment of biosensors on pH-strip-type paper, an affordable, robust, disposable ...

    STTR Phase I 2019 Department of DefenseArmy
  3. High Precision Remote Cardiopulmonary Monitoring through combined iPPG and Low Power Radar

    SBC: Cardiac Motion, LLC            Topic: AF19AT003

    Vital sign, such as respiration rate and heart rate, provide important indications of the physiological and mental conditions of an Airman. Being able to understand the physiological and mental conditions of an operator is therefore of vital importance to improving the efficiency and efficacy of future Air Force operations. Current state-of-the-practice in continuous cardiopulmonary vital sign mon ...

    STTR Phase I 2019 Department of DefenseAir Force
  4. Disablement of Vehicles and/or Remote Weapon Stations in an Urban Environment

    SBC: INTEGRATED SOLUTIONS FOR SYSTEMS INC            Topic: A18BT013

    In an effort to address the needs laid out in the solicitation, “Disablement of Vehicles and/or Remote Weapon Stations in an Urban Environment”, IS4S plans to develop a weapon system that allows for the disablement of critical components in electronic systems. Current soldier delivered weapons fail to meet the requirements of low collateral damage engagement in civilian populated areas. The so ...

    STTR Phase I 2019 Department of DefenseArmy
  5. Software Tools for Scalable Quantum Validation and Verification

    SBC: SC SOLUTIONS, INC.            Topic: A18BT011

    In this Small Business Technology Transfer (STTR) Phase I project, SC Solutions, teaming with Sandia National Laboratories (SNL), will demonstrate the feasibility of a scalable Quantum Computing Validation & Verification (QCVV) tool that will allow quantum computing researchers to rapidly and conveniently test and benchmark their quantum computing systems. While several QCVV techniques have been d ...

    STTR Phase I 2019 Department of DefenseArmy
  6. CogTracer

    SBC: SOAR TECHNOLOGY INC            Topic: AF18BT001

    From individualized training, to responsive decision-support, and improved human-machine teaming, the ability to accurately predict the cognitive state of an individual in real time would open the door for numerous technologies that would benefit the operational needs of the warfighter. Until now, much of the research using EEG for operational needs has focused on tailoring a system to detect only ...

    STTR Phase I 2019 Department of DefenseAir Force
  7. Quench Monitoring and Control System for High-Temperature Superconducting Coils

    SBC: ADVANCED CONDUCTOR TECHNOLOGIES LLC            Topic: N19AT016

    The Navy has been developing superconducting systems, based on high-temperature superconductors (HTS), for future use on Navy ships. One of the challenges associated with superconducting magnets is the possibility of a quench, which is an event where a local hot spot develops within the superconductor that quickly spreads throughout the device, driving it into its normal and dissipative state. Sen ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Atomic Triaxial Magnetometer

    SBC: VESCENT PHOTONICS LLC            Topic: N19AT006

    Vescent Photonics and MIT Lincoln Labs (MIT-LL) propose to develop a quantum-based vector magnetometer with low size, weight, power, and cost (SWaP+C) for Navy applications. The proposed system will rely on probing magnetically-sensitive, atomic-like transitions of nitrogen-vacancy (NV) centers in diamond to provide stable, high-bandwidth readout of the vector magnetic field with sub-picotesla sen ...

    STTR Phase I 2019 Department of DefenseNavy
  9. Metal Additive Manufacturing with Minimal Post Processing (MaMMPP) (18-RD-116)

    SBC: UES INC            Topic: A18BT003

    Metal Additive Manufacturing (AM) research has typically addressed understanding how to maximize performance for an AM material, taking into account microstructural anisotropy, residual stress, defects (such as pores and lack of fusion defects), and surface finish. Optimizing a part then requires significant post processing such as hot isostatic pressing (HIP), heat treatment and surface finishing ...

    STTR Phase I 2019 Department of DefenseArmy
  10. Compact Mode-Hop Free Narrow Line Turnkey Laser System for Quantum Technology

    SBC: OEWAVES, INC            Topic: A18BT014

    In this Project OEwaves Inc. in collaboration with the UCLA trapped-ion quantum computing group proposes to develop extended-cavity ultra-stable diode laser systems that have the properties required for quantum computing and metrology. The system will be based on a semiconductor laser locked to a monolithic microcavity (a whispering gallery mode resonator, WGMR [1]) using a self-injection locking ...

    STTR Phase I 2019 Department of DefenseArmy
US Flag An Official Website of the United States Government