You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Hot Filament CVD technology for disruptive, high-throughput SiC epitaxial growth reactors

    SBC: TRUENANO, INC.            Topic: N18AT004

    TrueNano, Inc. will in collaboration with the University of Colorado and industry partners, develop a novel single-wafer, high-throughput hot filament CDV reactor for the growth of high quality silicon carbide (SiC) epitaxial layers, suitable for the next generation of power electronic devices and systems. This includes the design and simulation of the reactor, the development of a throughput mode ...

    STTR Phase I 2018 Department of DefenseNavy
  2. Innovative additive manufacturing (AM) process for successful production of 7000 series aluminum alloy components using Smart Optical Monitoring Syste

    SBC: SENSIGMA LLC            Topic: N18AT005

    Naval aircraft components are routinely made of 7000 series aluminum alloys due to their strength, weight and fatigue properties. Present Additive Manufacturing (AM) processes falls short of producing 7000 series Al alloys successfully due to lack of porosity, thermal and composition control. In-situ methods implemented to date largely only yield information about the component surface and other m ...

    STTR Phase I 2018 Department of DefenseNavy
  3. Concrete Materials Characterization (COMAC)

    SBC: Luminit LLC            Topic: N18AT006

    To meet the U.S. Navy, specifically PMA-201, need for nondestructive evaluation (NDE) of concrete, including evaluating its strength, material properties, and damage localization, Luminit, LLC, and Southern Illinois University (SIU) propose to develop a novel Concrete Materials Characterization (COMAC) system, combining several methods of concrete characterization into a single sensor/software com ...

    STTR Phase I 2018 Department of DefenseNavy
  4. Non-Destructive Concrete Interrogator and Strength of Materials Correlator

    SBC: KARAGOZIAN & CASE, INC.            Topic: N18AT006

    Karagozian & Case Inc. and the University of Nebraska-Lincoln Department of Civil Engineering are proposing a Phase I STTR to develop a non-invasive and non-destructive methodology capable of measuring concrete material properties, including relevant spatial and statistical information associated with them, for input to hydrocode models. The solution will be both laboratory and field deployable, w ...

    STTR Phase I 2018 Department of DefenseNavy
  5. Protocol Feature Identification and Removal

    SBC: P & J ROBINSON CORP            Topic: N18AT018

    Protocols used for communication suffer bloat from a variety of sources, such as support for legacy features or rarely used (and unnecessary) functionality. Traditionally, the Navy subscribes to a blanket adoption of a standard protocol "as is". Unnecessary features are active and can be accessed by both internal and external systems creating security vulnerabilities. PJR Corporation's (PJR's) Pha ...

    STTR Phase I 2018 Department of DefenseNavy
  6. Autonomous Navigation for the Hull Bug Ship Hull Grooming System

    SBC: SEAROBOTICS CORPORATION            Topic: N18AT020

    The underpinning science and sensing associated with autonomous navigation is advancing on numerous fronts. The navigation capability required for ship hull grooming in a low visibility environment is a natural application of this technology. Enormous benefit will be realized in the public and private sectors of the shipping industry. The economic and environmental impact realized using proactive ...

    STTR Phase I 2018 Department of DefenseNavy
  7. Active Imaging through Fog

    SBC: SA PHOTONICS, LLC            Topic: N18AT021

    Active imaging systems are used to for imaging in degraded visual environments like that found in marine fog and other environments with a high level of attenuation and scattering from obscurants like fog, rain, smoke, and dust.These systems are still limited in range and resolution. SA Photonics is taking advantage of multiple image enhancement techniques, like wavelength tunability, pulse contro ...

    STTR Phase I 2018 Department of DefenseNavy
  8. Operational Sand and Particulate Sensor System for Aircraft Gas Turbine Engines

    SBC: HAL Technology, LLC            Topic: N18AT023

    Gas turbine engines with prolonged exposure to sand and dust are susceptible to component and performance degradation and ultimately engine failure. Hal Technology’s proprietary, compact, rugged, flush-mounted, fiber-optic sensor platform measures particulate size, size distributions, and concentration for real-time engine health monitoring. Our proposed sensor will use an innovative hybrid disc ...

    STTR Phase I 2018 Department of DefenseNavy
  9. Cubic Boron Nitride Claddings for Friction Stir Tooling

    SBC: Plasma Processes, LLC            Topic: N18AT026

    Friction stir welding (FSW) is an attractive joining method where high strength low porosity welds can be attained. However, the high temperatures and forces required for welding high strength materials like steel require the use of exotic tools. Cubic boron nitride (cBN)-based tools offer attractive tool wear characteristics in steels, but are very costly. Conversely, refractory metal alloys are ...

    STTR Phase I 2018 Department of DefenseNavy
  10. Internet of Things (IoT) Agent (IoTA) Framework for Evaluating Effectiveness and Efficiency

    SBC: RAM LABORATORIES            Topic: N18AT027

    The Internet of Things (IoT) is increasingly being used to create smart platforms where operators are being removed from the loop. These smart capabilities include collaborative IoT sensors and platforms that are self-aware and provide capabilities of self-prediction, self-configuration, and self-maintenance. To fully take advantage of these advances, however, testbeds and frameworks are needed to ...

    STTR Phase I 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government