You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Ultra-Wideband, Low-Power Compound Semiconductor Electro-optic Modulator

    SBC: FREEDOM PHOTONICS LLC            Topic: N13AT005

    Freedom Photonics is proposing to develop a novel modulator concept. The overall objective of this program is to develop a novel compound-semiconductor electro-optic modulator that simultaneously exhibits 100-GHz operation, optical/microwave velocity matching, Zo of 50 ohms, low optical (

    STTR Phase I 2013 Department of DefenseNavy
  2. Multi-scale modeling of corrosion fatigue damage using peridynamics theory

    SBC: CFD RESEARCH CORPORATION            Topic: N13AT007

    The overall objective of this effort is to identify, and validate a suitable methodology and the associated multi-scale computational technique for predictive assessment of corrosion fatigue damage in Naval aircraft. Annual costs for corrosion inspection and repair of military aircraft are estimated to exceed $1B. Predictive modeling of corrosion fatigue damage is challenging since it has to captu ...

    STTR Phase I 2013 Department of DefenseNavy
  3. Interlaminar Mode I and Mode II Fracture Toughnesses in Ceramic Matrix Composites (CMCs)

    SBC: ALPHASTAR TECHNOLOGY SOLUTIONS LLC            Topic: N13AT008

    Ceramic Matrix Composite (CMC)'s are highly susceptible to interlaminar shear failure at elevated temperatures. Therefore, interlaminar properties, critical design limitation of CMC should be assessed accurately with appropriate test methods to ensure overall structural reliability/integrity of components in Naval gas turbine engines. AlphaSTAR proposes to develop rigorous, precise, and innov ...

    STTR Phase I 2013 Department of DefenseNavy
  4. Handoff Training for Combat Casualty Care (HTC3) Framework

    SBC: Perceptronics Solutions, Inc.            Topic: DHA17B001

    This proposal is to develop a Handoff Training for Combat Casualty Care (HTC3) Framework.Training is the crux of the handoff problem today. Patient handoffs are a crucial part of casualty care, both in military and civilian environments; and today handoffs are being performed in less than optimal fashion, with ineffective communications accounting for 80% of the handoff errors. Our new HTC3 Framew ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  5. Combat Casualty Handoff Automated Trainer (CCHAT)

    SBC: SOAR TECHNOLOGY INC            Topic: DHA17B001

    Combat casualty handoffs are critical communication moments during which responsibility for the patient and important casualty information is transferred between providers. The nature of these handoffs requires specialized training, for which no standardized framework currently exists. The proposed effort aims to develop a capability, compatible with current DoD systems, that provides caregivers w ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  6. CCHAT Handoff Protocol

    SBC: SOAR TECHNOLOGY INC            Topic: DHA17B002

    Research has identified that handoffs are particularly important communication processes, during which communication error can lead to patient safety situations. Organizations have created standard practices and training materials to encourage teamwork communication for handoffs, however these do not necessarily capture the needs of military medicine of combat casualty care. Combat casualty handof ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  7. Oxygen Production and Delivery on Demand

    SBC: GLOBAL RESEARCH & DEVELOPMENT INC            Topic: DHA17B005

    This proposal is in response to the Defense Health Agency 2017 Phase I SBIR topic 17B-005.The approach is the use of a membrane oxygen pump using newly developed nano-thickness membranes with all the layers less than 1 micron total.Nanometer thickness membranes enable more oxygen output per surface area at temperatures of 300-600 C than current state-of-the -art 600-800 C membranes that are 50-300 ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  8. Griffon Test Suite

    SBC: SOAR TECHNOLOGY INC            Topic: DHA17C001

    In this proposal we support the development of a hypoxia test battery by designing and developing a domain general tool suite for processing, synchronizing, and evaluating data from cognitive, behavioral, and physiological measures.The proposed Griffon Tool Suite addresses many of the practical requirements demanded by a flexible test battery. The effort falls into three major thrusts.First, we pr ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  9. Compact Thermal Management System for Laser Systems

    SBC: SPECTRAL ENERGIES LLC            Topic: N18AT001

    The use of laser technologies and high-power electronics is rapidly being incorporated into tactical platforms for imaging, target designation, and range finding. Electronic equipment including lasers demand power from a tactical aircraft and produce large amounts of thermal energy as a waste product. Current thermal management technologies will not be sufficient for future aircraft as thermal man ...

    STTR Phase I 2018 Department of DefenseNavy
  10. Meaning-Aligned Record Synthesis for Training Emerging Capabilities (MARSTEC)

    SBC: SOAR TECHNOLOGY INC            Topic: N18AT003

    Operational experts collect recorded data about emerging tactics, techniques, and procedures (TTPs) from sources such as live and virtual training exercises, and numerous test and evaluation simulations. However, instructional designers cannot easily reuse the recorded data to create new training. Without sufficient access to operational experts, expert knowledge is inaccessible and fragmented, of ...

    STTR Phase I 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government