You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Thermoelectric material-coated carbon nanotubes as high conductivity thermal interface materials

    SBC: ADA TECHNOLOGIES, INC.            Topic: AF09BT22

    The ever-decreasing size of the electronic microchips and the ever-increasing density of electronic components required to support future Air Force platforms are creating the problem of substantial localized heat generation that can impair component operation. State of the art thermal interface materials (TIMs), that are used to dissipate heat from the source to the spreader in a microchip, are se ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Tools for Modeling & Simulation of Molecular and Nanomaterials for Optically Responsive Devices

    SBC: UES INC            Topic: AF09BT30

    Military applications for CBRNE/GWTO and C4ISR require R&D for materials to protect personnel and equipment. However, challenges remain in experimental synthesis and characterization of new materials, such as providing insight into observed properties for further advancement. Thus, it is essential to develop a predictive modeling and simulation approach that will not only provide a fundamental u ...

    STTR Phase I 2010 Department of DefenseAir Force
  3. Coupled Cluster Methods for Multi-Reference Applications

    SBC: ACES QC, LC            Topic: AF09BT40

    The objective of Phase I is to identify the strengths and weaknesses of the various multi-reference coupled-cluster (MRCC) methods that have been proposed for the description of molecular states depending upon near degeneracies and non-dynamic electron correlation. Such effects are encountered in bond breaking, at transition states, for complex open shell systems like transition metal atoms, and f ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Theoretical Innovations in Combustion Stability Research: Integrated Analysis and Computation

    SBC: Kassoy Innovative Science Solutions            Topic: AF09BT38

    Quantitative predictions of reactive flow dynamics from large-scale simulations of Liquid Rocket Engines (LRE) appear to be model dependent. Relationships and coupling among the dominant mechanisms most responsible for destabilization are obscured by the complexities of the model and subtle consequences of inherent ad hoc approximations not supported by mathematical rationale. The reliability of ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Fusion of a Real-time Analytical Model with Facility Control Systems

    SBC: STREAMLINE AUTOMATION LLC            Topic: AF09BT16

    AEDC personnel have developed and demonstrated the effectiveness of coupling a control volume model with a wind tunnel control system. The performance of the model was hampered because parameters of the model were assumed to be constant, when they are likely variables. A method for using facility data to determine functional relationships defining these parameters would allow them to vary during ...

    STTR Phase I 2010 Department of DefenseAir Force
  6. Simulation Tool for Modeling Weakly Ionized Plasma

    SBC: TECH-X CORPORATION            Topic: AF09BT10

    We propose to develop a commercial weakly ionized plasma modeling capability based off of Tech-X’s high energy density plasma fluid code TxFluids. The new additions will be able to be used to model hypersonic vehicle physics including shock waves, plasma chemistry and innovative techniques for blackout mitigation and hypersonic vehicle control through the application of electric and/or magnetic ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. Laser Induced Surface Improvement for Superior Wear Resistance in Extreme Conditions

    SBC: CFD RESEARCH CORPORATION            Topic: AF09BT19

    The objective of this Phase I project is to evaluate the use of novel Laser Induced Surface Improvement (LISI) techniques to provide surface modification to substrate materials which will provide superior wear resistance in extreme conditions. The specific application of interest is the hypersonic metal-to-metal contact that occurs at high speed test track facilities that can and has lead to catas ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. Surface plasmon enhanced tunneling diode detection of THz radiation

    SBC: ITN ENERGY SYSTEMS, INC.            Topic: AF09BT33

    This Small Business Technology Transfer Research phase I program will develop a new class of uncooled THz detectors for the 1-10THz band with a novel design using surface plasmon resonant cavities with integrated metal-insulator-metal tunneling diodes as the detecting element. Tunneling diodes provide ultrafast broadband response, potentially into the visible (300THz), but demonstrated performanc ...

    STTR Phase I 2010 Department of DefenseAir Force
  9. Aerosol Jet Printing of Single-Wall Carbon Nanotube Transistors on Plastic Substrate

    SBC: OPTOMEC, INC.            Topic: AF09BT26

    Aerosol Jet printing is proposed as a method for printing large area, CNT-based transistor arrays on flexible substrate. The teaming relationship combines expertise in high resolution printing along with device and materials expertise. All semiconductor, dielectric, and conductive materials comprising the TFTs will be solution processed and printed with a single machine. This will lead to a cos ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. High-Fidelity Simulation of Hypersonic Weakly Ionized Plasmas with Dynamically Adaptive Mesh

    SBC: CFD RESEARCH CORPORATION            Topic: AF09BT10

    The goal of the proposed research is to develop advanced computational tool for high-fidelity simulations of hypersonic non-equilibrium plasmas. Octree adaptive Cartesian mesh will be used for automatic mesh generation and dynamic mesh adaptation to plasma properties, particularly important for hypersonic flows with strong shock waves, transient laminar and turbulent domains with large gradients o ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government