You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. A Trusted Computing Framework for Embedded Systems

    SBC: Intelligent Automation, Inc.            Topic: AF11BT15

    ABSTRACT: The damage and loss caused by attacks and security breaches have drawn attentions to develop secure and reliable systems for embedded systems. Compared to their desktop counterparts, embedded devices are facing more security challenges, such as the more possible physical access to a target device and more constrained computing environment (e.g., limited RAM and CPU power). Together, the ...

    STTR Phase II 2013 Department of DefenseAir Force
  2. Organic&Hybrid Organic/Inorganic-Based Graded-Index/Layered Optical Coatings by Physical Vapor Deposition (PVD)

    SBC: INTER MATERIALS, LLC            Topic: AF10BT19

    ABSTRACT: One of the Air Force main interests is to improve the antireflective (AR) optical properties of polycarbonate by exploring new coating materials or coating techniques to eliminate delamination and stress cracks due to the mismatch in the coefficient of thermal expansion between the coatings and the polymer substrates. SwRI and INTER Materials are in a unique position to assist the Air F ...

    STTR Phase II 2013 Department of DefenseAir Force
  3. Hybrid Energy Harvesting Systems

    SBC: Prime Photonics, LC            Topic: AF10BT22

    ABSTRACT: For this Phase II STTR effort, Prime Photonics and Virginia Tech propose to demonstrate a fully packaged hybrid photovoltaic/magneto-thermoelectric (PV/MTG) panel with improved energy conversion efficiency designed for solar powered air vehicles. In addition to acting as an active thermal backplane for the PV, the MTG is designed to maximize thermal to electrical conversion from the av ...

    STTR Phase II 2013 Department of DefenseAir Force
  4. Nublu: Assured Information Sharing in Clouds

    SBC: Modus Operandi, Inc.            Topic: AF11BT30

    ABSTRACT: We propose to develop an assured information sharing framework for cloud-based systems that leverages our ongoing work in the areas of policy-based usage management and semantic interoperability. The development of this framework will involve the creation of a novel approach to information sharing that treats security as a commodity that can be dynamically provisioned within the cloud, ...

    STTR Phase II 2013 Department of DefenseAir Force
  5. Highly-Scalable Computational-Based Engineering Algorithms for Emerging Parallel Machine Architectures

    SBC: RNET TECHNOLOGIES INC            Topic: AF10BT13

    ABSTRACT: RNET and The Ohio State University propose to use algorithmic modifications and multi-level parallelization techniques and tools to improve the scalability of the aero-line/aero-elastic coupled CFD/CSD codes relevant to the DoD/AF (e.g., CREATE/Kestrel). The optimizations will address inter-node and intra-node parallelization to better target emerging compute architectures (e.g., multi ...

    STTR Phase II 2013 Department of DefenseAir Force
  6. Operating System Mechanisms for Many-Core Systems

    SBC: SECURBORATION INC            Topic: OSD11T04

    In the Phase I portion of this STTR, Securboration and renowned multicore expert Dr. Frank Mueller from North Carolina State University designed, developed, and benchmarked the proof-of-concept Pico-kernel Adaptive and Scalable Operating-system (PICASO) for many-core architectures. The Securboration Team took a scientific, experimentation-based approach to identifying and resolving shortcomings wi ...

    STTR Phase II 2013 Department of DefenseAir Force
  7. Design and Analysis of Multi-core Software

    SBC: SECURBORATION INC            Topic: OSD11T03

    Modern processor design is trending increasingly toward multicore architectures. This is problematic for programmers because writing a correct parallel program is known to be difficult compared to writing the equivalent sequential program. Additionally, a wide body of sequential code has already been developed that cannot exploit the power offered by these new cores because it was written in a s ...

    STTR Phase II 2013 Department of DefenseAir Force
  8. Suppression of Wind Turbine Clutter from Radar Data

    SBC: MATRIX RESEARCH INC            Topic: AF12BT05

    ABSTRACT: It is well known that wind turbine clutter (WTC) presents a significant challenge to detecting targets in civilian and military applications. The large radar cross section (RCS) of wind turbines, combined with their significant range of Doppler spread, make traditional clutter mitigation techniques effectively useless. The objective of this Phase I effort is to develop a physically con ...

    STTR Phase I 2013 Department of DefenseAir Force
  9. Exploitable Physics for Recognition and Classification

    SBC: MATRIX RESEARCH INC            Topic: AF12BT06

    ABSTRACT: The objective of this effort is to develop innovative methods for deriving a sparse set of physical target features that can be used for exploitation of air to ground signature data collected from sensor systems including electro-optical, infrared, and laser radar. Current classification methods require near exact replication of the original imaging parameters, or extensive modeling in ...

    STTR Phase I 2013 Department of DefenseAir Force
  10. Autonomic Performance Assurance for Multi-Processor Supervisory Control

    SBC: COLORADO ENGINEERING INC.            Topic: OSD11T01

    Multi-processor computing systems are growing in capacity and usage. They encompass multiple, distributed implementations as well as heterogeneous, embedded computing architectures. The processing density enabled by such approaches holds promise for unmanned combat air vehicles (UCAVs) with their plethora of mission sensors and command and control processing requirements. However, the software ...

    STTR Phase II 2013 Department of DefenseAir Force
US Flag An Official Website of the United States Government