You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Massively Parallel Micromachining with Ultrafast Lasers

    SBC: Kapteyn-Murnane Laboratories, Inc.            Topic: AF08T029

    We are proposing to develop a highly parallel, rapid prototyping system for the manufacture of microfluidic devices. In this phase II proposal we will build a complete system for making such devices for continued research on fieldable microfluidic systems for use in the military, and in hospitals. The project will also allow manufacturing in widely different materials, and structures, without an ...

    STTR Phase II 2010 Department of DefenseAir Force
  2. Monte Carlo Sampling Based Collision Detection Algorithm Development And False Positive And False Negative Rate Analysis: A Bayesian Approach

    SBC: Princeton Vision LLC            Topic: ST081005

    In this Phase II proposal, the main thrust is to build a hardware MCICD prototype, and validate the FAR/FNR through real vehicle testing. By leveraging the existing LADAR based sensing platform in CMU, we expect to shorten the development cycle and reduce the overall cost. Extensive real vehicle testing is expected both in staged scenarios and in normal traffic. In this Phase II program, we also p ...

    STTR Phase II 2010 Department of DefenseDefense Advanced Research Projects Agency
  3. Acoustic Intercept Receiver for Naval Special Warfare Undersea Vehicles

    SBC: INFORMATION SYSTEMS LABORATORIES INC            Topic: N09T012

    Information Systems Laboratories (ISL) and Florida Atlantic University (FAU) propose to develop and test a system that uses existing signal processing algorithms coupled with innovative construction technology developed ISL under our E-Field sensor programs and FAU under UUV programs. The Challenge is to develop a small system package with the capability to intercept active threat emissions early ...

    STTR Phase II 2010 Department of DefenseNavy
  4. Development of Advanced Energetic Oxidizers for Solid Propellant applications.

    SBC: FLUOROCHEM, INC.            Topic: N09T017

    The objective of this program is to design advanced energetic oxidizers superior to ammonium perchlorate (AP), develop methods for their preparation, and characterize the products. The overall goal of the Phase II program with options is to make the technology ready for commercialization

    STTR Phase II 2010 Department of DefenseNavy
  5. Distributed Fiber Optic Twist Measurement in Shape Sensing Tethers

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: N08T029

    Existing methods to provide cable orientation and array element localization in the Navy’s fixed and towed array systems and tethered unmanned vehicles rely on devices embedded in the cable itself, such as hydrophones, magnetic heading and orientation sensors, and accelerometers. These traditional sensors have power, weight, space, and EMI budgets within the cable that require design compromises ...

    STTR Phase II 2010 Department of DefenseNavy
  6. Ocean Energy Extraction for Sensor Applications

    SBC: TREX ENTERPRISES CORPORATION            Topic: N08T021

    Remote ocean instrumentation often relies on floating buoys with sensors to acquire time series measurements such as ambient noise, acoustic tracking or communications. The operating lifetime of small remote buoys is limited by batteries (often to 12 - 24 hrs), and recharging is so inconvenient or impractical that many small sonobuoys are designed to scuttle themselves after about a day. The assoc ...

    STTR Phase II 2010 Department of DefenseNavy
  7. Novel Fiber Optic Methods for Sensing Shape, Orientation and/or Heading of Undersea Arrays and Tethers

    SBC: 3 Phoenix, Inc.            Topic: N08T029

    In the Phase I STTR, N08-T029 “Novel Fiber Optic Methods for Sensing Shape, Orientation and/or Heading of Undersea Arrays and Tethers” a concept was developed for a fiber optic sensing array and shape reconstruction algorithm to be used for situation awareness of flexible undersea cable structures. Undersea cable structures are deployed in environments unsuitable for direct in-situ observation ...

    STTR Phase II 2010 Department of DefenseNavy
  8. Rapidly Deployable Display with Continuous Self-Correction

    SBC: VSee Lab LLC            Topic: N07T003

    During the Phase I period, we have successfully developed and demonstrated all the major technical components to achieve the goal of providing seamless large scale display anywhere, anytime, for any content. Based on the solid foundation we have built from Phase I, we plan to improve and integrate various components to develop intelligent projectors that can be networked together to create a seaml ...

    STTR Phase II 2010 Department of DefenseNavy
  9. Advanced Compressor Technology for Ultrafast Fiber Lasers

    SBC: Raydiance, Inc.            Topic: NAVY07T009

    Ultrafast laser technology offers compelling capabilities for national defense, state-of-the-art health care, and the materials processing industry. The development of this technology into commercial form factor hardware has been limited mostly by the size, cost, complexity, and/or pulse energy limitations of current ultrafast laser systems. Optical fiber based ultrafast lasers have dramatically d ...

    STTR Phase II 2010 Department of DefenseNavy
  10. Advanced Compressor Technology for Ultrafast Fiber Lasers

    SBC: Raydiance, Inc.            Topic: N07T009

    Ultrafast laser technology offers compelling capabilities for national defense, state-of-the-art health care, and the materials processing industry. The development of this technology into commercial form factor hardware has been limited mostly by the size, cost, complexity, and/or pulse energy limitations of current ultrafast laser systems. Optical fiber based ultrafast lasers have dramatically d ...

    STTR Phase II 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government