You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Advanced Real Time Battery Monitoring and Management System

    SBC: Spectral Labs Incorporated            Topic: N10AT013

    Although many off-the-shelf and semi-custom Battery Management Systems (BMS) are available, the Navy recognizes with this STTR Topic, and recent history illustrates, that a safety system with the required reliability and performance for mission critical applications has not been demonstrated. This proposal will detail the Spectral Labs Incorporated (SLI) and University of California, Davis (UCD) t ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Naval Special Warfare (NSW) Underwater Secure Text Messaging and Diver Locater

    SBC: DESERT STAR SYSTEMS, LLC            Topic: N10AT034

    Small combat dive teams require a situational awareness capability that combines robust, low probability of detection (LPD) communication with navigation/tracking functions. The project will result in a compact terminal for underwater acoustics based communication, navigation and tracking. The Diver Messaging and Navigation Terminal (DMNT) will be rugged and easy to use, warranting a description ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Metamaterial Antennas Imbedded with Ballistic Armor (PDRT10-006)

    SBC: VANGUARD SPACE TECHNOLOGIES, INC            Topic: N10AT021

    The proposed STTR will demonstrate how magnetic meta materials based antennas are ideal for integration into composite structures where the graphite composite backplanes can be integrated with dielectric ballistic protection materials that surround, yet do not interfere with the antenna. In ongoing research we have shown such antennas can approach the theoretical Gain-Bandwidth Product (GBWP) limi ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Graded-Composition Refractory Coatings for Protection of Cu-Rails for Electromagnetic Launchers

    SBC: Engineered Coatings, Inc.            Topic: N10AT025

    The Navy is developing an electromagnetic (EM) launcher for long-range naval surface-fire-support. Severe operating conditions of the EM system place stringent requirements for materials, including high current and magnetic fields, high temperatures, contact with liquid metals, high stress/gouging from balloting contacts and high-speed-sliding electrical-contact with an Al armature. Engineered Coa ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Miniature Electronic DFI for 5-20 Hp HFE

    SBC: JM HARWOOD, LLC            Topic: N10AT033

    JM Harwood, LLC, and UAH Propulsion Research Center propose the development of an electronic miniature Direct Fuel Injection (DFI) system for 5-20 hp heavy fuel engines. This highly integrated Very Small Injection Technology (V-SInTech) DFI system will be capable of (a) multiple injections per cycle, (b) variable injection timing, (c) variable spray penetration depth, (d) real-time closed loop mod ...

    STTR Phase I 2010 Department of DefenseNavy
  6. High Efficiency Gain Media for Eye-Safer 1.55 µm Ultrafast Fiber Amplifiers

    SBC: Kapteyn-Murnane Laboratories, Inc.            Topic: N10AT012

    We propose to design a high average power Er:Fiber ultrafast laser system which is pumped at 14xxnm, and at the same time solve other problems related to ultrashort pulses in fiber lasers. The advantage of using 14xxnm pumping is the reduction of the standard quantum defect from 37% to 5%, thus greatly reducing the thermal load on the system, which makes it inherently more efficient. We also inten ...

    STTR Phase I 2010 Department of DefenseNavy
  7. An Integrated Physics-Based Framework for Detecting Precursor to Damage in Naval Structures

    SBC: Los Gatos Research            Topic: N10AT042

    Aging aircraft commonly suffers from several types of degradation including fatigue cracking and lack of bonding. It is virtually impossible to predict degradation in structural performance or when a component or structure will fail due to the inability to test new material systems under all loading conditions and under all environmental conditions. A material state awareness system using minimali ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Probing Dense Sprays with Gated, Picosecond, Digital Particle Field Holography

    SBC: Metrolaser, Inc.            Topic: N10AT027

    This is a proposal to develop a unique, robust, fieldable, gated, picosecond, digital holography system for characterizing dense particle fields under harsh conditions. Many powerful imaging methods have failed to fulfill this requirement because noise from multiple scattering buries the signal needed to acquire a useful image. Solutions to this limitation are very expensive, hard to implement, an ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Wideband Metamaterial Antennas Integrated into Composite Structures

    SBC: Nextgen Aeronautics, Inc.            Topic: N10AT021

    A team led by NextGen Aeronautics Inc., and working with San Diego State University proposes the development of redundant wideband antennas that are embedded in composite armor structures The planned work builds upon the team’s extensive prior experience in conformal load-bearing antenna structures (CLAS), antenna design, and metamaterials. The proposed antenna is a combination of concepts that ...

    STTR Phase I 2010 Department of DefenseNavy
  10. High-rate Manufacturing of Structural-state Sensors (MOSS)

    SBC: Nextgen Aeronautics, Inc.            Topic: N10AT031

    The goal of the proposed research is the development of a high-volume, low-cost manufacturing along with a novel deposition process that enables fabrication of a structural-state electronic system-on film. This hybrid electronic system contains a multifunctional sensor suite that can measure a structure's static (such as deformation, stress and strain) and dynamic state (such as slow or under acce ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government