You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High Sensitivity Light-Weight Gyroscope

    SBC: Los Gatos Research            Topic: MDA08T005

    Gyroscopes are found in nearly every airplane, many cars, robots, missiles, and more. The reason for such broad, wide-spread use is simple: gyroscopes are excellent tools for determining rotation, and can be quite sensitive. Improving the sensitivity of optical gyroscopes while also reducing their size and weight has proven to be a significant challenge. To provide a solution, Los Gatos Researc ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  2. An Integrated Physics-Based Framework for Detecting Precursor to Damage in Naval Structures

    SBC: Los Gatos Research            Topic: N10AT042

    Aging aircraft commonly suffers from several types of degradation including fatigue cracking and lack of bonding. It is virtually impossible to predict degradation in structural performance or when a component or structure will fail due to the inability to test new material systems under all loading conditions and under all environmental conditions. A material state awareness system using minimali ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Characterizing the Impact of Control Surfaces Free-Play on Flutter

    SBC: Materials Technologies Corporation            Topic: N10AT003

    Free-play nonlinearity of the control surfaces has a direct impact on aircraft’s dynamic stability characteristics. . It is impossible to design and manufacture a control surface with zero free-play. As control surface free-play increases, tighter limits must be imposed on the aircraft mission capability. Typically, researchers have utilized an oversimplified piecewise-linear torque-rotation rel ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Probing Dense Sprays with Gated, Picosecond, Digital Particle Field Holography

    SBC: Metrolaser, Inc.            Topic: N10AT027

    This is a proposal to develop a unique, robust, fieldable, gated, picosecond, digital holography system for characterizing dense particle fields under harsh conditions. Many powerful imaging methods have failed to fulfill this requirement because noise from multiple scattering buries the signal needed to acquire a useful image. Solutions to this limitation are very expensive, hard to implement, an ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Simultaneous Imaging of Velocity and Temperature Fields in Reacting Flows using Thermographic Phosphors

    SBC: Metrolaser, Inc.            Topic: A09AT003

    A method is proposed for the simultaneous imaging of temperature and velocity fields inside combustion chambers to enable experimental data on turbulent heat fluxes needed for model validation and development. Applications include turbine engines, afterburners, internal combustion engines, and boilers. Temperature imaging is proposed with laser-induced luminescence imaging of phosphor particles su ...

    STTR Phase I 2010 Department of DefenseArmy
  6. Efficient High-Power Tunable Terahertz Sources using Optical Techniques

    SBC: Microtech Instruments, Inc.            Topic: AF08T009

    The main objective of the proposed Phase II project is to leverage the technology of THz generation in resonantly-pumped quasi-phase-matched (QPM) GaAs structures, jointly developed by Stanford University and Microtech Instruments, Inc., and create a compact and power-efficient commercial THz source with a mW-level average power. This source will be continuously or step-tunable in the 0.5-3 THz ra ...

    STTR Phase II 2010 Department of DefenseAir Force
  7. MEMS based thermopile infrared detector array for chemical and biological sensing

    SBC: New Jersey Microsystems, Inc.            Topic: A10AT004

    New Jersey Microsystems proposes to develop an economical thermopile array with sensitivity maximum in the long wave infrared region (LWIR). Current infrared detectors are too expensive to be widely deployed in large numbers. The proposed MEMS technology is simpler, more manufacturable, and therefore less expensive than bolometer and ferroelectric devices with competitive D* sensitivity. The th ...

    STTR Phase I 2010 Department of DefenseArmy
  8. Fast Updatable Large-area Holographic Display

    SBC: NEW SPAN OPTO-TECHNOLOGY, INC.            Topic: AF08T001

    Two-dimensional (2D) visualization techniques have limit capacity to achieve understanding of full dimensionality of the battlefield. Rewritable 3D holographic storage is promising for updatable 3D display applications. In Phase I, New Span Opto-Technology has demonstrated novel concepts of both holographic recording technique and recording material system without the use of high voltage. We have ...

    STTR Phase II 2010 Department of DefenseAir Force
  9. Gigawatt Nonlinear Transmission Lines (GW-NLTL)

    SBC: NumerEx            Topic: AF09BT14

    Nonlinear transmission lines offer new vistas in the generation of high power microwave wave (HPM) signals. All electromagnetic sources use an active medium to convert electrical energy to high frequency waves and ultra-wide band signals that can perform useful work. Traditional methods rely on electron beams for the active medium. Nonlinear transmission lines use nonlinear circuit elements to ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Speckle image processing for conformal sub-aperture arrays

    SBC: Optical Physics Company            Topic: AF08T021

    Future Air Force platforms require electro-optic long range imaging systems conformal to the surface of the aircraft to minimize drag and maximize stealth. The long imaging range often means having to compensate for atmospheric turbulence as well as the boundary layer around the aircraft. During the first phase of this STTR project, Optical Physics Company (OPC) demonstrated the feasibility o ...

    STTR Phase II 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government