You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High Density Hybrid Motors

    SBC: Terves LLC            Topic: T101

    The Phase I STTR project will develop an ignition system for a high density hybrid rocket motor using non-toxic, storable, ionic liquid oxidizers and high density polymer fuels. The program will also research fuel additives to boost ISP and fuel regression rate of the high density, high regression ate fuel.. This high density propulsion system resolves one of the chief drawbacks of hybrid rock ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  2. The Development of an Optic Fiber Based Hybrid Spectroscope

    SBC: LASER & PLASMA TECHNOLOGIES LLC            Topic: T801

    Laser & Plasma Technologies (LPT), teamed with the National Science Foundation (NSF) Center for Lasers at the University of Virginia (UVA), proposes an advanced optical fiber coupled hybrid spectroscope for in situ characterization of organic compounds. The proposed approach provides information on organic compounds by analyzing spectra obtained from Laser Induced Breakdown Spectroscopy (LIBS) an ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  3. Innovative Solid State Lighting Replacements for Industrial and Test Facility Locations

    SBC: Energy Focus, Inc.            Topic: T1002

    The proposed innovation is the replacement of existing test stand and parking lot fixtures with current SSL LED technology. The replacement fixtures will reduce energy consumption, generate less heat and provide maintenance free operation for over 50,000 hours. An explosion-proof fixture is capable of containing an internal combustion event without allowing flames or hot gasses to escape to the s ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  4. Radiation Resistant, Reconfigurable, Shape Memory Metal Rubber Space Arrays

    SBC: NANOSONIC INC.            Topic: T3

    NanoSonic has demonstrated that Shape Memory Metal RubberTM (SM-MR) adaptive skins exhibit reconfigurable and durable RF properties. It is hypothesized that such morphing skins shall also exhibit durable radiation resistance upon morphing; a property that few, if any, flexible materials offer. Typical highly filled or metal evaporated nanocomposites crack and spall upon flexation, and cannot be ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  5. Self Assembled Carbon Nanotube Enhanced Ultracapacitors

    SBC: NANOSONIC INC.            Topic: T601

    The objective of this NASA STTR program is to develop single wall carbon nanotube (SWCNT) based ultracapacitors for energy storage devices (ESD) application, using NanoSonic's patented molecular level self-assembly process performed at room temperature. Specifically, we would combine advances in metallic SWCNTs, metal and oxide nanoclusters, and polymeric materials and electrostatic self-assembly ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  6. Microchannel Thermo Catalytic Ignition for Advanced Mono- and Bipropellants

    SBC: Plasma Processes, LLC            Topic: T301

    Small and micro-spacecrafts require the efficient, micro-propulsion systems. Chemical micro-propulsion is best suited for use as primary thrust, orbital insertion and attitude control because of its high energy density. When grouped into arrays for larger thrust applications, micro-propulsion devices provide high propulsive flexibility or can be used as igniters. The proposed effort will focus ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  7. Mesh Generation and Adaption for High Reynolds Number RANS Computations

    SBC: Research South, Inc.            Topic: T801

    This proposal offers to provide NASA with an automatic mesh generator for the simulation of aerodynamic flows using Reynolds-Averages Navier-Stokes (RANS) models. The tools will be capable of generating high-quality, highly-stretched (anisotropic) grids in boundary layer regions and transition smoothly to inviscid flow regions even in an adaptive context. The objective of the work is to offer a un ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  8. Gaseous Helium Reclamation at Rocket Test Systems

    SBC: Sierra Lobo, Inc.            Topic: T1001

    The ability to restore large amounts of vented gaseous helium (GHe) at rocket test sites preserves the GHe and reduces operating cost. The used GHe is vented into the atmosphere, is non-recoverable, and costs NASA millions dollars per year. Helium, which is non-renewable and irreplaceable once released into the atmosphere, is continuously consumed by rocket test facilities at NASA centers such a ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  9. Enhanced Carbon Nanotube Ultracapacitors

    SBC: SCIENTIC INC            Topic: T601

    The proposed innovation utilizes carbon nanotubes (CNTs) coated with pseudo-capacitive MnO2 material as nano-composite electrode and ionic electrolyte for the construction of ultracapacitors. This novel approach of using nano-structured CNTs architectures provides high surface area of attachment of MnO2 nano-particles to maximize the charge efficiency and power capacity and to reduce series resist ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  10. Hydrogen Recovery System

    SBC: SKYRE, INC            Topic: T1001

    Liquid hydrogen is used extensively by NASA to support cryogenic rocket testing. In addition, there are many commercial applications in which delivery and use of cryogenic hydrogen is more economical than gaseous hydrogen. Unfortunately, loss of hydrogen resulting from boiloff can both increase the cost of the end product and create safety concerns. Sustainable Innovations and its teammates, Th ...

    STTR Phase I 2010 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government